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A B S T R A C T  

With the expansion of smart homes, Human Activity Recognition (HAR) has become a key challenge in 

artificial intelligence, enhancing not only the comfort and safety of residents but also contributing to the 

development of applications such as healthcare and smart surveillance. The Transformer architecture, with 

its ability to model long-term dependencies and process data in parallel, has made significant advancements in 

recognizing human activities. In addition, its multi-head attention mechanism enables the analysis of complex 

input data by allowing the model to focus on different parts of the input simultaneously, capturing diverse 

relationships and dependencies within the data. This paper examines the application of Transformers in HAR 

and analyzes recent studies (since 2019). In addition to investigating innovative architectures, feature 

extraction methods, and accuracy improvements, it also discusses the challenges and future prospects of these 

models in recognizing human activities. Rapid advancements in deep learning and access to extensive datasets 

have made Transformers a key tool for improving the accuracy and efficiency of HAR systems in smart 

environments. 
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1. Introduction 

The growth of technology and the artificial 
intelligence have making it a significant factor to 
improve the quality of human life. In recent years, 
one of the most popular applications of artificial 
intelligence is Human Activity Recognition (HAR). 
A HAR system automatically identifies the human 
activities, actions and behaviors based on the data 
captured by various sensors [1]. Traffic control 
systems, healthcare [2], elderly care [3], sports [4], 
security monitoring  [5], emotion detection[6], and 
surgical activity recognition[7] systems are just a 
few examples of services that rely on HAR. 

In fact, an HAR system identifies activities by 
analyzing a series of data sent from sensors over 
time [8]. Most of these activities are ordinary, such 
as walking, talking, standing, and sitting. It is also 
possible to perform an activity in smart place such 
as a smart home [9]. The stages of activity 
recognationusing the signals received from different 
sensors and based on deep learning techniques are 
briefly displayed in Figure 1. 

Sensor data can be recorded remotely, such as 
through installed home cameras [10] , door sensors 
[11], radar, Wi-Fi [12], or other wireless methods. 
Alternatively, data can be directly recorded on the 
subject of interest, such as wearable sensors 
including accelerometers, gyroscopes, and 
magnetometers [13] or smartphones [14]. 

HAR involves processing large datasets, which 
can lead to high computational costs and increased 
training time for models. Traditional machine 
learning approaches excel at recognizing human 
activities through meticulous handcrafted features 
and algorithms; however, these methods face 
limitations due to their reliance on manual design 
and feature selection processes [15]. Conversely, 
deep learning models like Convolutional Neural 
Networks (CNN) demonstrate significant potential 
in HAR [16, 17], outperforming conventional 
techniques by automatically extracting meaningful 
representations directly from input data without 
requiring explicit feature engineering. As deep 
learning gains prominence within the field of 
machine learning and data mining, there's been an 
emerging shift towards more automated and self-
learning systems, which promise improved 
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performance and reduced dependence on expert-
driven feature extraction [18]. The feature extraction 
and model building processes are often performed 
simultaneously in deep learning models. Features 
can be automatically learned through the network 
instead of being manually designed. Additionally, a 
deep neural network can extract high-level 
representations in the deep layers, making it more 
suitable for complex activity recognition tasks [15]. 

The transformer architecture is a deep learning 
model which was introduced for the first time in 
December 2017 in a paper  titled "Attention Is All 
You Need", which states attention is everything you 
need in Google's machine translation [19] . At first, 
transformers were introduced to address the 
challenges of sequence modeling tasks, but their 
success in the field of natural language processing 
has encouraged researchers to explore various 
applications beyond text translation [20]. 
Transformers implement an attention-based 
encoder-decoder architecture for sequence analysis. 
Attention mechanisms learn to gather information 
from the entire sequence, thus accurately identifying 
behavioral patterns [21]. 

 The core concept of self-attention in 
transformers has been employed in many recent 
methodologies, including Bidirectional Encoder 
Representations from Transformer (BERT), 
Generative Pretrained Transformer (GPT), and 
Vision Transformer (ViT). In addition, the 
transformer is utilized across various domains such 
as natural language processing (NLP), object 
detection [22], action recognition [23] , HAR [24], 
and computer vision (CV) [25]. 

Transformers, due to their specific architecture, 
have had various applications in HAR systems and 
have been able to improve some of the challenges of 
these systems. For example, in the data 
preprocessing and feature extraction [26, 27] stage, 
they can help reduce the data volume and have 
shown good accuracy in activity recognition [27]. 

The transformer architecture has emerged as a 
popular choice for recognizing human activities, 
making it crucial to review the research in this area. 
In this study, several papers published from 2019 
onwards were analyzed to explore the role and 
application of transformers in HAR research. Our 
paper provides a comprehensive overview of the 
innovative applications of transformer architectures 
in the field of HAR. By systematically reviewing 
various types of sensors utilized in HAR, including 
sensor-based and vision-based technologies, we 
establish a foundational understanding of the data 
sources that drive HAR systems. The exploration of 
Transformer-based architectures, such as attention-
based, vision-based, and hybrid models, highlights 
their unique capabilities in processing complex input 
data and capturing long-term dependencies.  

 

Figure. 1. Human activity recognition framework comprises of 
four main parts, (a) data collection for HAR using vision sensor , 

wearable sensor and environmental sensor; (b) data 

preprocessing, feature selection and feature extractin which 
performs essential pre-processing steps for the collected data; (c) 

training phase,which utilizes neural network or machine 

learning(ML) or deep learning approaches to learn patterns from 

thecollected data, and (d) activities recognition. 

Furthermore, our review delves into the datasets 
used for HAR, emphasizing their importance in 
training effective models. We also address the 
challenges faced when implementing Transformers 
in HAR, offering insights into potential solutions 
and future directions for research. 

The article is organized as follows: Section 2 
introduces the types of data collection methods, and 
Section 3 introduces the types of transformers. 
Section 4 discusses the most common datasets in 
this field, and Section 5 reviews various articles that 
have used the distinctive architecture of transformers 
for human activity recognition. Section 6 the 
challenges associated with the use of transformers in 
HAR applications are discussed. Finally, Section 7 
presents the results of the study and outlines 
potential future work. Figure.2 illustrates the 
research process of our paper. 

2. Different Types of Sensors in Har 

The first step in developing a HAR system is 
data collection. The data for a HAR system is 
obtained using various devices and sensors [28]. 
Figure 3 provides an overview of different data 
collection methods for a HAR system. Generally, 
data collection techniques can be divided into two 
main categories: image-based methods [29], and 
sensor-based methods [30]. 

2.1. Sensor-based HAR 

A. Environmental Sensors: Environmental 
sensors measure environmental conditions. For 
example, temperature, humidity [31], light, air 
pressure, and air quality [32]. sensors fall into this 
category. These sensors can be used in smart home 
systems, smart city equipment, and other 
environmental equipment [33] . 

B. Wearable Sensors: Wearable sensors are 
placed in devices or wearable items and measure 
physical activity, physiological parameters, location, 
and other information [34] . For example, heart rate  
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Figure. 2. research process 

 

Figure. 3. Data collection techniques 

sensors, accelerometers, gyroscopes, 
magnetometers, and GPS sensors fall into this 
category. These sensors are commonly used in 
wearable devices such as smartwatches, fitness 
bands, and sports equipment [33, 35] . 

C: Radio sensors: Radio sensors use radio waves 
to detect and transmit information. For example, 
NFC (Near Field Communication) [36], RFID 
(Radio Frequency Identification) [37], and CSI [38]. 
are types of these sensors. They are used in various 
applications such as object identification, wireless 
payment, and device control. New optimized 
methods have been introduced in recent research, 
such as the activity detection system using CSI-
based Wi-Fi reconstruction. Although Wi-Fi 
channels (CSI) are non-contact and low-cost, they 
are limited due to high computational complexity 

and poor cross-domain generalization 
performance[39]. 

2.2. Vision-based HAR 

A. Video: Videos captured by cameras and other 
sensors can be processed to recognize human 
activites [40]. By analyzing video images, different 
features can be extracted for the purpose of object 
identification, motion detection and behavior 
analysis [41]. These sensors are used in many fields, 
including robotics [42, 43], smart cars [44] , security 
surveillance [45, 46] and smart city systems [47]. 

B. Images: This category includes sensors and 
devices that receive and process still images. These 
sensors usually capture images at a specific moment 
and extract information for object identification 
[48], face detection [49], and image analysis such as 
Medical Image Analysis [50]. These images can be 
obtained from digital cameras, CCTV cameras, 
mobile cameras, and other image sources. The use 
of images is common in fields such as medicine [51] 
, security [52] , aerial imaging [53], and industrial 
[54]imaging [55] . 

3. Transformer-Based Architectures 

In this section, we provide an overview of 
different transformers architectures which are 
utilized in HAR research. 

Transformer architectures rely on the self-
attention mechanism, which offers several 
advantages over recurrent layers, such as better 
model parallelism and reduced inductive bias 
compared to convolution networks. This mechanism 
allows the model to dynamically focus on different 
parts of the input sequence, establish pairwise 
correlations, and model long-range dependencies 
between input data elements. In self-attention, the 
model calculates attention weights for each position 
in the sequence, reflecting the importance of each 
position relative to others. This enables the model to 
attend to various parts of the sequence based on the 
input. The attention module's input is processed by 
three distinct fully connected (FC) layers, which are 
trained to produce Query (Q), Key (K), and Value 
(V) tensors. The scaled dot-product attention (A), as 
described in Equ(1), is then computed [19].  

Attention (𝐐, 𝐊, 𝐕)  = softmax 𝑉              (1)    

The Query and Key are multiplied in an element-
by-element manner to produce a score matrix, which 
is divided by √ 𝐷𝑘 , the square root of output 
dimensions of the Key matrix to alleviate the 
gradient vanishing problem. The softmax function 
boosts high score values and dampens lower score 
values. The attention score is finally obtained by 
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multiplying the attention and value matrix, as given 
in Equ(1).   

3.1. Attention-Based Transformers (Vanilla 

Transformer) 

The Vanilla Transformer is a sequence-to-
sequence model composed of an encoder and a 
decoder, each consisting of sets of identical blocks. 
Each encoder block primarily comprises a multi-
head self-attention module and a position-wise 
feedforward network (FFN). Additionally, self-
attention modules in the decoder are adjusted to 
prevent the presence of each position in subsequent 
positions. [19, 56]. The overall architecture of the 
Vanilla Transformer is illustrated in the Figure 4. 

3.2. Vision-Based Transformers 

In 2019, with the introduction of the vision 
transformer architecture by Dosovitskiy and his 
colleagues  [13], significant progress occurred. The 
aim of this new approach is to process images 
without relying on traditional convolutional 
operations commonly used in computer vision tasks. 
Vision transformers, using self-attention 
mechanisms, intended to capture relationships 
between different regions of an image. This 
advancement led to new opportunities in analyzing 
image data. Some sample applications of vision 
transformer are images classification [57], and 
person re-identification [58] . Figure 5 shows the 
architecture of vision transformer. 

3.3. Inverse Transformers 

The Inverse Transformer (iTransformer) simply 
reverses the tasks of the attention mechanism and 
the feed-forward network. Specifically, temporal 
points in time series are embedded as token signals 
used by the attention mechanism to capture multi-
variable correlations. Meanwhile, the feed-forward 
network is applied to each variable token to learn 
non-linear representations. The iTransformer model 
achieves state-of-the-art performance on various 
real-world datasets, enhancing the Transformer 
family with improved performance, generalization 
across different variables, and better utilization of 
arbitrary review windows, making it a compelling 
alternative [2] . 

3.4. Self-Attention-Based Transformers 

Self-attention in the transformer model refers to 
the model's ability to attend to all parts of the input 
sequence at each prediction step. This feature allows 
the model to consider complete information from the 
input sequence and prevent the loss of some 
information in subsequent stages. This is in contrast 
to "local attention" which only attends to specific 
parts of the input. Self-attention fundamentally 
enables the model to look at the entire context of the  

 

Figure. 4. Vanilla transformer architecture 

 

Figure. 5. The Vision Transformer architecture: (a) the main 

architecture of the model; (b) the Transformer encoder module. 

input sequence during the encoding of each input 
element and not lose any information over time. 
This allows the model to make predictions with a 
complete view of the input without losing important 
information over time [19]. 

3.5. Transformer-Based Hybrid Models 

Self-attention in the transformer model refers to 
the model's ability to attend to all parts of the input 
sequence at each prediction step. This feature allows 
the model to consider complete information from the 
input sequence and prevent the loss of some 
information in subsequent stages. This is in contrast 
to "local attention" which only attends to specific 
parts of the input. Self-attention fundamentally 
enables the model to look at the entire context of the 
input sequence during the encoding of each input 
element and not lose any information over time. 
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This allows the model to make predictions with a 
complete view of the input without losing important 
information over time [59].  

The hybrid transformers are models that 
combine the architecture of transformers with other 
architectures such as CNN [60]. This combination is 
made to improve the performance and capabilities of 
neural models. In general, in hybrid transformers, 
parts of the model use architectures other than 
transformers, such as CNN, or are added to the main 
transformer structure with modifications. This can 
provide improvements in areas such as performance, 
learning speed, and model generalizability. Like 
This study proposes a hybrid SqueezeNet-vision 
transformer (SViT) model that combines the 
strengths of SqueezeNet and vision transformer 
(ViT) [61]. 

3.6. Multi-modal Transformer 

Multi-modal Transformers are deep learning 
models based on the Transformer architecture that 
are capable of processing multi-modal data. The 
model is based on the original Transformer 
architecture and usually has multiple inputs, each 
representing a type of data, such as images and text. 
These models are able to combine different 
information from the input data using self-attention 
layers and extract spatial information and important 
features using the Transformer neural network [62]. 

4. Datasets of Har 

This section summarizes key datasets commonly 
used in Human Activity Recognition (HAR) 
research. These datasets are critical for evaluating 
new methodologies and serve as benchmarks for 
comparing algorithm performance: 

1. The PAMAP2 Dataset: This dataset includes 
motion and activity data captured by various 
sensors, including accelerometers, gyroscopes, and 
magnetometers. The dataset provides raw data about 
various activities such as walking, running, climbing 
stairs, and more [63]. 

2. The Casas Dataset: This dataset contains data 
related to daily activities in the home environment. 
It includes data such as movement, interaction with 
objects, use of household items, and environmental 
changes. This dataset is commonly used for research 
related to smart homes and smart living. Subsets 
include Casas Aruba, Milan, and Kyoto [64]. 

3. UCI HAR Dataset: This dataset contains motion 
data obtained using an accelerometer and gyroscope. 
It includes various activities such as walking, 
running, sitting, and other movements. Additionally, 
the data has been preprocessed and various features 
have been extracted from it [65]. 

4. WISDM Dataset: The WISDM dataset is a 
publicly available standard HAR dataset recorded by 
the Wireless Sensor Data Mining Lab. This dataset 
contains data of  a specific set of daily activities 
performed by 51 individuals. Participants placed an 
Android mobile phone in their front pocket and 
performed various activities such as sitting, slow 
walking, up, down, standing, and walking for a 
certain period of time  We have reviewed the 
general characteristics of the introduced dataset in 
the Table1. 

5. CMDFALL Dataset: Contains data from 50 
individuals wearing wrist and waist sensors, 
capturing normal activities (e.g., walking, sitting) 
and abnormal events (e.g., falls), sampled at 50 Hz 
[66]. 

6. C-MHAD Dataset: Focuses on hand gestures for 
smart TV control, offering 2-minute video and 
inertial data streams from 12 subjects [67]. 

7. DaLiAc Dataset: Includes 13 activities recorded 
from 19 subjects using IMUs (hip, chest, wrist, 
ankle) at 204.8 Hz [68]. 

8. Penn-Action Dataset: Offers 2,326 RGB video 
sequences across 15 action classes (e.g., pushups, 
baseball swings) [69]. 

9. NTU-RGB+D Dataset: Contains 56,880 samples 
across 60 action classes, providing multi-modal data 
(depth maps, 3D skeletons, RGB, infrared) with 
cross-subject and cross-view protocols [70]. 

10. Opportunity Dataset: Includes 6 hours of 
recordings from wearable and ambient sensors, 
featuring 113 sensor channels and annotations for 
posture states and gestures [71]. 

11. UTD-MHAD Dataset: Comprises 27 activities 
performed by 8 subjects, with multi-modal data 
(RGB, Depth, Skeleton, Inertial) across 861 samples 
[72]. 

12. MMAct Dataset: Contains 35 activities 
performed by 20 subjects with data from 7 
modalities (e.g., RGB, Skeleton, Acceleration), 
recorded using cameras, smart glasses, smartphones, 
and smartwatches [73]. 

Table 1 provides a comparative overview of 
these datasets, highlighting sensor types, activities, 
participants, and environments. These datasets are 
foundational for training and evaluating machine 
learning and deep learning models in HAR, offering 
researchers a structured basis for algorithm 
benchmarking and analysis. 

5. Transformer-Based Human Activity 

Recognition 

In this section, we will explore different 
architectures of transformers and their applications 
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Table 1. Summary of  Datasets used in HAR research papers 

Dataset Year 
Total 

Samples 
Modality Devices Subjects Features Activity 

Dataset 
Characteristics 

PAMAP2 2012 3,850,505 wireless inertial Wearable 9 18 Real Multivariate, 

Time-Series 

Casas (17)  
2011 1,045,876 Environmental Sensor 1 11 Real 

Multivariate, 
Time-Series 

UCI HAR 
2013 10,299 

accelerometer and 
gyroscope 

Wearable 30 6 - Multivariate, 
Time-Series 

WISDM 
2012 15,630,426 

accelerometer and 
gyroscope 

Smartphone, 
smartwatch 

51 Real 18 Multivariate, 

Time-Series 

CMDFALL[66] 
2018 20,764,515 

Accelerometer, 
gyroscope, 

magnetometer 
Wearable 6 13 Real Multivariate, 

Time-Series 

C-MHAD [67] 
2013 2,320,000 

Accelerometer, 
RGB, depth 

Kinect, 
wearable 

12 8 Real Multimodal, 

Multivariate 

DaLiAc 2017 14,180,000 Accelerometer Wearable 15 6 Real Multivariate, 
Time-Series 

Penn-Action 
[69] 

2015 232,000 Video RGB camera 2326 15 Annotated Single-modality, 

Action videos 

NTU-RGB+D 
[70] 

2016 56,880 
RGB, depth, 

skeleton 
Kinect, 

wearable 
40 60 Annotated Multivariate, 

Time-Series 

Opportunity 
[71] 2011 4,184,000 

Accelerometer, 
gyroscope, 

magnetometer 

Wearable, 
environmental 

4 113 Annotated Multimodal, 

Multivariate 

UTD-MHAD 
[72] 

2015 861,888 
Accelerometer, 
gyroscope,depth 

Kinect, 
wearable 

8 27 Annotated Multivariate, 
Time-Series 

MMAct [73] 
2019 6,000,000 

Accelerometer, 
gyroscope,video 

Smartphone, 
RGB camera 

50 20 Real Multimodal, 

Multivariate 

 

in HAR studies. We will delve into specific HAR 
applications of these transformer architectures, 
showcasing their effectiveness in identifying and 
classifying human activities in various contexts. 

5.1. Attention-Based Transformers (Vanilla 

Transformer) 

The input to HAR systems consists of datasets 
collected from various sensors, presented as a time 
sequence. These data include precise timestamps 
and sensor status at each moment. Unlike 
smartphone or smartwatch data, which are recorded 
at fixed intervals, environmental sensors in smart 
homes generate data in response to events, leading 
to irregular recording as an event stream. 

Kwapisz et al. [74] examine the use of deep 
learning models, especially the transformer model, 
for detecting human activities using wearable 
sensors. In their paper, deep learning models 
including RNN, LSTM, BLSTM, 1D CNN, and 
DeepConvLSTM have been investigated. Saidani 
and colleagues' recommendations for improving 
model generalization and preventing overfitting 
include using data augmentation techniques such as 
time warping, domain adaptation, and adding 
Gaussian noise to training data. The composite 
features of this model extract information from low-

level and high-level sensor data, enhancing the 
system's discriminative power. These features 
include mel-spectrogram, tonnetz, spectral contrast, 
chromagram, and MFCC. In the proposed model, 
the extracted features are used as input for the 
transformer model, which increases model accuracy 
by using fewer layers to extract long-range 
dependencies. Finally, metrics such as accuracy for 
datasets PAMAP2, UCI HAR, and WISDM are 
proposed for evaluating the proposed transformer 
model. 

Overall the irregularity of sensor events poses 
challenges for traditional time series processing 
methods, which assume fixed intervals. Therefore, 
newer approaches like "activity-based sliding 
windows" are better suited for handling such data 
[75] . 

The Sliding Window Algorithm [76] is an 
activity-based approach used in time series analysis 
and signal processing. This method moves a moving 
window over the data and performs operations such 
as feature extraction or pattern recognition at each 
window location. The sliding window algorithm is 
capable of identifying patterns and important events 
in time series data and continuously updating them. 
This method is used in various fields such as activity 
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recognition in sensor systems, motion analysis in 
videos, and detection of special patterns and events. 

Transformers, known for their ability to capture 
complex relationships within data, combined with 
the sliding window method, significantly enhance 
activity recognition accuracy. This integration 
enables the model to analyze both the information 
within each window and the relationships across 
different time windows. 

In a recent study by  Huang et al. [24], combining 
activity-based sliding windows with transformer 
models significantly enhances the accuracy of 
activity recognition by effectively integrating 
different features of sensor data. Transformers, with 
their ability to process data in parallel and learn 
complex patterns, have proven to be powerful tools 
for sensor data analysis. 

In summary, innovative methods like activity-
based sliding windows and transformers address the 
challenges of processing sensor data in smart 
environments, enabling HAR systems to detect 
activities with greater accuracy and efficiency. 

One key challenge in designing HAR systems is 
determining the optimal window size. The time 
window represents a sequential subset of input data 
presented to the model at each step. Choosing the 
right window size is critical—too small may lack 
sufficient information, while too large can reduce 
model performance and increase computational cost. 
The ideal window size depends on factors like 
activity type, sensor sampling rate, and model 
complexity. 

Trung-Hieu Le and colleagues investigated the 
Transformer model for detecting human actions 
from inertial sensors [77]. This model has the 
capability to discover temporal correlations between 
features and offers advantages such as 
parallelization of large time series computations and 
the ability to learn more accurate context in long 
time series. 

In their experiment, the impact of window size 
on the performance of the Transformer model has 
been investigated, and choosing an appropriate 
window size can contribute to improving detection 
.The results have shown that with an increase in the 
window size, the detection accuracy also improves. 
This model has been evaluated on three publicly 
released sensor datasets, MHAD-C, CMDFALL, 
and DaLiAc, demonstrating better performance 
compared to conventional methods, especially in the 
CMDFall dataset, which shows a 4.19% increase in 
F1 score compared to the conventional method. In 
the MHAD-C dataset, the accuracy has also reached 
56.99%. 

Ultimately, the comparison with other methods 
shows that the proposed approach has superior 

performance in gesture recognition from 
accelerometer and gyroscope data and has higher 
accuracy. The results confirm the role of 
Transformer models in identifying human activities. 

A key challenge in HAR systems is enhancing 
model accuracy and generalization, especially with 
sensor data that includes noise or unpredictable 
variations. Overfitting is a significant issue, limiting 
models to training data and hindering performance 
on unseen data, particularly when data is collected at 
low frequency or contains high levels of noise. 

Saeidnia et al. proposed a system that uses data 
augmentation techniques to increase model 
generalization and prevent overfitting [78]. 
Techniques such as time shifting, domain 
adaptation, and Gaussian noise are used to increase 
training data and improve model generalization. The 
proposed composite features of this model have the 
ability to extract information from low-level and 
high-level sensor data, which helps enhance the 
system's discriminative power. Some of the features 
used in this model include mel-spectrogram, 
tonnetz, spectral contrast, chromagram, and MFCC. 
In this model, the extracted features are used as the 
input to a transformer model. By using fewer layers 
to extract long-range dependencies, which leads to 
improved accuracy, the model has successfully been 
used to recognize complex patterns of human 
activities. 

HAR data is usually collected from diverse 
sources, including video, skeleton data, and other 
sensors, each offering complementary information 
about activities. However, effectively integrating 
these diverse data sources remains challenging due 
to issues like data heterogeneity, noise, and 
imprecise labeling. Traditional methods often 
struggle with these challenges, limiting their ability 
to provide a comprehensive and accurate 
understanding of activities. 

A method for multi-feature representation based 
on mutual learning and attention mechanism is 
proposed in the research [79], For cross-modal 
learning, a data fusion method combines 
spatiotemporal video cross-modal data and a 
skeleton, transforming them into multi-class tokens 
to address the challenge of integrating cross-modal 
movement data. The STAR-transformer introduces a 
novel cross-modal attention module that replaces the 
multi-head attention of ViT and has demonstrated 
outstanding performance through various 
experiments. 

To evaluate the performance of this algorithm, 
two datasets have been utilized: Action-Penn and 
D+RGB-NTU. For comparison, previous State of 
the Art (SoTA) methods have also been employed. 
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The transformer-STAR algorithm has the 
capability to integrate diverse features, including 
RGB video frames, skeleton information, and shared 
trajectories, using multi-class tokens. A spatial-
temporal cross-modal attention module has been 
employed as a fundamental tool for simultaneously 
understanding these features. 

The transformer-STAR algorithm, utilizing the 
Transformer and spatial-temporal cross-modal 
attention module, is capable of combining 
information from various sources for optimal action 
recognition. These results demonstrate the high 
performance of this algorithm in action recognition 
tasks using both video data and skeletal information. 

Another key challenge in HAR is deploying and 
generalizing features derived from sensor data 
across different locations and conditions. Sensor 
data, especially from wearable devices, can vary 
greatly depending on circumstances (e.g., location or 
activity type). These variations can lead to reduced 
accuracy and performance of HAR systems, 
particularly when the extracted features fail to 
generalize effectively across diverse conditions and 
subsets of the data. 

The authors of paper [80] have proposed an 
adversarial learning-based transformer framework 
for HAR using wearable sensors in various locations 
through the TASKED KnowledgE-Self distillation. 
In this approach, a neural network consists of three 
main components: feature extractor, activity 
classifier, and topic discriminator. The feature 
extractor uses a transformer to map sensor data to a 
common feature space. The transformer is used as a 
larger architecture for modeling complex 
transformations and relationships over time and 
space. 

This method employs the technique of self-
knowledge distillation to enhance the deployment of 
extracted self-knowledge features on various 
thematic subsets. The topic discriminator and 
activity classifier are simultaneously trained to 
embed not only activity categorization but also 
thematic information into the extracted features. The 
paper utilizes common evaluation metrics such as 
accuracy, class-wise accuracy (Fw), and 
proposition-wise accuracy (Fm) to assess the 
system's performance. These evaluations are 
conducted based on distinctions between activities 
and the generalization ability of the extracted 
features across different subsets of data. 

A major challenge in HAR is ensuring that 
features extracted from sensor data can generalize 
across different conditions and locations. Variations 
in sensor data, especially from wearable devices, can 
lead to reduced accuracy in HAR systems. To tackle 
this, the authors of [81] proposed a transformer-
based approach integrated with adversarial learning. 

The study in [81]  has utilized a new approach 
called "Transformer Based Attention Consensus 
(TBAC)" to improve the detection of human actions 
in videos. This new approach is presented in the 
form of a transformer-based attention consensus 
module (TBAC). In this paper, the transformer has 
been employed as a key component in the TBAC 
module. This use of the transformer aims to enhance 
the extraction and aggregation of temporal features 
from videos. Additionally, a consensus decision 
algorithm (DC) has been used, which leverages 
multiple independent but related action recognition 
models to improve their performance. 

datasets HMDB51 and HAA500 and accuracy 
metrics (Top-1 accuracy and Top-3 accuracy) were 
employed to assess the models' performance. The 
results indicated that the TBAC module and the 
Attention-based Decision Consensus (DC) algorithm 
have significantly improved the accuracy of motion 
detection. 

HAR and Smartphone Localization Recognition 
(SLR) are key challenges in biosignal processing. 
Extracting complex temporal patterns from 
sequential data is critical to addressing these 
challenges. Traditional models, like CNNs, have 
been widely used, but they struggle to capture long-
term and intricate relationships within the data 
effectively. 

Shavit et al. [82] employ an architectural 
approach based on the Transformer model, which 
has proven effectiveness in sequence analysis. 
Various datasets, including SLR for mobile phone 
location identification, HAR and SHAR combining 
mobile location and human activity identification, 
with over 27 hours of recordings from 91 users, 
have been used. 

The Transformer is employed to fuse sequences 
and extract temporal features from sequential data. 
This aids in identifying and integrating temporal 
patterns in sequential data. 

The authors used three categories of data, SLR, 
HAR, and SHAR, to evaluate the performance of 
their method and employed accuracy as the main 
metric for evaluation. The results indicate that the 
proposed method (IMU-Transformer) consistently 
improves classification accuracy compared to a 
comparative method (IMU-CNN). This 
improvement is observed in challenging scenarios 
and data diversity within the datasets. Additionally, 
this paper examines the execution time of the 
models, demonstrating that the execution time of the 
Transformer architecture is higher compared to the 
CNN architecture. However, this difference in 
execution time is negligible compared to the 
expected time for classification. 
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Researchers in their study [83], proposed and 
implemented an Attention-based Transformer model 
as a novel architectural design. This model was 
compared to the conventional approach of LSTM 
recurrent neural networks. The Transformer operates 
based on attention mechanisms without the need for 
recurrent or convolutional layers. It demonstrates the 
ability to learn high-level features by training an 
end-to-end neural network, requiring significantly 
less time and computational resources for feature 
design. The final results indicate that the attention-
based Transformer model has performed better than 
the LSTM model. Although overfitting has been 
observed in the Transformer pattern, the evaluation 
accuracy and attention feature performance of the 
Transformer-based model are higher compared to 
LSTM. 

5.2. Vision-Based Transformers 

The authors in  [84], have used a method for 
HAR using 3D skeleton data. The method involves 
extracting spatiotemporal geometric features from 
the 3D skeletal joint information, which are then 
analyzed using a transformer encoder to recognize 
human activities. This model is solely based on the 
transformer encoder without convolutional or 
recurrent layers. 

To evaluate the method, the authors utilized 
several well-known HAR datasets, including 
KARD, Florence 3D, UTKinect Action 3D, and 
MSR Action 3D. Various evaluation protocols were 
employed, such as data split into training/testing sets 
with different ratios and the "new-person" or "leave-
one-actor-out" protocol. The results indicate that the 
proposed method exhibited significant 
improvements compared to many existing 
approaches and demonstrated good performance in 
recognizing human activities from 3D skeleton data. 

Liu et al.  [85] employed a method called 'Spatio-
Temporal Transformer Networks (SSTNs)' for 
detecting key activities in videos. This approach 
utilizes deep neural network models to learn active 
attention regions in the spatial and temporal frames 
of videos. The paper employs the Transformer 
architecture to utilize attention mechanisms in the 
temporal space dependent on video features. This 
usage can be beneficial for learning precise 
relationships between different frames of the video 
and improving the network's capability to detect 
more accurate activities. 

The model utilizes a cost function to learn 
attention regions in spatial and temporal features. 
The authors have employed supervised learning 
techniques to train the networks. A combination of 
STN architecture with regressive guiding of 
attention regions has also been used to enhance the 
learning process. To evaluate the performance of the 
model, the authors used the MPII Cooking Activities 

dataset. A common evaluation criterion of accuracy 
is used to evaluate the efficiency of the model. 

As presented in [86], the authors introduced 
employed a novel approach using transformer neural 
networks for HAR . These transformer neural 
networks (TNNs) consist of two main components: 
the Record Transformer (ReT) and its extension 
called Vision Transformer (ViT). In this approach, 
ResNet50 is utilized as a Feature Extractor. For ReT 
(Record Transformer), transformer layers are 
employed to analyze sequences of features extracted 
from ResNet50. A transformer-based approach is 
used for feature extraction, analysis, and 
interpretation of the data. For performance 
evaluation, the authors have employed several 
evaluation metrics, including accuracy and runtime 
at certain stages of model execution. The 
performance of the models has been investigated on 
various datasets, including YouTube action, UCF50, 
UCF101, and HMDB51. The results demonstrate 
that the proposed models (ViT-ReT) offer 
significant improvements in accuracy and execution 
speed compared to contemporary models, especially 
in resource-constrained environments. 

5.3. Inverse Transformers 

Efficiently and dynamically adjusting the 
learning rate enhances the model's ability to utilize 
input data and optimize the learning process. 
Another key challenge in this domain is managing 
attention mechanisms and extracting relevant 
features from sensor data, particularly in complex 
models dealing with variable data types. 

The authors of paper [87] , introduce a sensor-
based HAR technique using deep learning, 
employing a reverse attention mechanism based on 
transformers. This reverse attention is calibrated 
throughout the learning period, regularizing 
attention modules and dynamically adjusting the 
learning rate. This approach outperforms other 
advanced methods on five general sensor-based 
HAR datasets. Additionally, an alternative 
architecture is introduced using Convolutional 
Neural Networks (CNNs), Long Short-Term 
Memory (LSTM), and an inverse attention decoder. 
Various evaluation methods are employed in this 
article to assess the performance of HAR models. 

5.4. Self-Attention Transformers 

Real-time processing of sensor data in Human 
Activity Recognition (HAR) is challenging due to 
the presence of raw, noisy, and irrelevant 
information, which can degrade model performance. 
To address this,   Lee et al. [88] propose an 
experimental system leveraging a Self-Attention 
Transformer for efficient data filtering and activity 
recognition. 
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In this article , an experimental system has been 
designed, consisting of a filtering network and an 
initial classifier, to investigate the impact of 
unfiltered data on the detection of HAR without the 
need for reclassification. The filtering network 
extracts important features from the data in a time 
window using the attention mechanism of the 
transformer. The extracted features are fed into an 
initial time-series-based classifier using LSTM. This 
initial classification is used to determine whether the 
collected information is sufficient for activity 
recognition or not. If it is sufficient, the system 
provides activity recognition results. 

Additionally, the filtering model is used to 
mitigate the impact of unfiltered data in real-time 
settings. The purpose of the filter network is to learn 
the representation of sensor states in transmission 
windows and filter out irrelevant data related to the 
target activity. A transformer encoder, based solely 
on self-attention mechanisms, has been applied as a 
filter network. In this article, a real-time activity 
recognition system based on neural networks has 
been developed. This system uses a filter network to 
process unfiltered data. The filter network assists in 
real-time detection of user activities. The 
experimental results demonstrate that the use of the 
filter network significantly improves the 
performance of activity recognition and can 
improvement unfiltered data. 

Sharifi et al.  [89] have employed a deep learning 
architecture called BioMAT, built on the 
transformer model. This model is used for predicting 
joint kinematics from the signals of multiple inertial 
measurement units (IMUs), involving the 
segmentation of motion data into cycles of 
consistent length using IMUs and associated signals. 

The BioMAT architecture, as a transformer, 
features self-attention layers that enable the 
consideration of global dependencies in data when 
processing sequences in parallel. This model 
includes an encoder section as attention layers and a 
decoder section that transforms the output from the 
representation vector to the target sequence. 

To evaluate the model's performance, metrics 
such as Root Mean Square Error (RMSE), 
normalized Root Mean Square Error (nRMSE), and 
Pearson correlation coefficient (r) between the 
predicted and measured kinematics have been 
utilized. The results demonstrate that BioMAT 
outperforms ordinary deep neural network models 
with higher accuracy, even without the need for 
motion cycle segmentation, enhancing precision. 

Jiang et al. have proposed a new method for 
identifying continuous human movements [90]. This 
method consists of two main elements: 

1. Continuous Motion Identification Network 
Based on Transformer: The micro-Doppler 
time-frequency map input is first 
transformed into a sequential layer (feature 
encoding layer). This layer extracts different 
features from the input and maps them into 
a high-dimensional space acceptable to the 
transformer. A multi-channel attention 
mechanism transformer has been used to 
predict continuous movements over time. 
This transformer specifically utilizes the 
attention mechanism to predict movements 
over time. 

2.  A separate network for motion type 
recognition, without considering temporal 
information, is trained using an ordered 
feature encoding layer. The predicted 
motion information over time and the 
information of only the predicted sequence 
of movements before and after the 
movement are combined and evaluated 
based on the state transition graph to decide 
whether the continuous movement is valid 
or not. Two strategies are used to determine 
the types of movements in the dataset: 
changing the dataset labels for network 
training and rules to restrict the predicted 
movements over time. Accuracy and 
convergence metrics are used to evaluate the 
accuracy and performance of the networks. 

this paper presents a new method for identifying 
and evaluating continuous movements, utilizing a 
transformer for predicting movements over time and 
an OCR network for recognizing movement types 
without time. The results indicate that this method 
has achieved high accuracy in identifying 
continuous human movements and successfully 
utilized the two mentioned strategies for movement 
evaluation. 

Guo et al. [91], have employed a method for 
HAR using high-dimensional radar data. The initial 
approach involves using radar keypoints as input for 
Point Transformer (PT) attention networks for 
classification. 

The Transformer initially generates high-
dimensional radar-based point clouds. These point 
clouds include information such as three-
dimensional spatial coordinates, Doppler, intensity, 
time, and other features related to the size and 
motion of objects. Subsequently, these point clouds 
are used as input for Point Transformer (PT) self-
attention models. These models leverage the self-
attention mechanism to extract important features 
from radar data. The self-attention mechanism 
allows the network to focus on different regions of 
the data and extract more critical information. 
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The results indicate that the use of these self-
attention models for processing radar-based point 
clouds has significantly improved accuracy and 
overall performance. This method has been 
employed for high-precision detection of human 
activities, even in scenarios where activities are 
stationary with minimal Doppler motion. 

In another research the transformer is directly 
employed as a time series processing model to 
extract features from signals received from 
smartphone sensors [92]. Due to its high 
parallelization capability and fast computation for 
time series, this model is introduced as an effective 
alternative to recurrent and convolutional networks 
in this domain. The vision transformer is also 
explored in this article. 

The authors utilized the KU-HAR dataset, which 
contains 18 different categories of human activities, 
for training and evaluating their models. In the 
testing phase, they employed unseen examples from 
the test dataset to predict activities using the neural 
network. Attention matrices were employed to 
investigate the effectiveness of the transformer in 
studying relationships in time series. The accuracy 
metric of the best validation set was used as the 
primary criterion for evaluating the models. 

5.5. Transformer-Based Hybrid Models 

Yan et al. have employed a method called MM-
HAT for HAR based on mmWave point cloud data 
[93]. This method utilizes an end-to-end 
Transformer network that introduces specific 
enhancements for mmWave point cloud data in the 
input embeddings of the transformers. MM-HAT 
consists of three main components: input 
embeddings, encoder, and decoder. Two types of 
inputs are utilized: point clouds and target data. 
Instead of the standard Transformer embeddings, a 
Point Cloud Representation Extractor (PRE) is 
designed to learn hidden representations of point 
clouds, and a Target Representation Extractor (TRE) 
is designed for embedding target data. Subsequently, 
the two types of embedded data are introduced as 
inputs to the Transformer encoder-decoder 
architecture. 

The evaluation results include accuracy of 
activity recognition , scalability, and inference time. 
The conducted evaluations indicate that MM-HAT 
is competitive compared to existing methods and 
exhibits better scalability than other approaches. 

Yi Liu and colleagues [94] have employed a new 
method called TransTM for HAR through collecting 
COTSRFID data using the device-free approach. 
This method consists of a combination of multiple 
layers of multi-scale transformer networks. In this 
method, raw RFID RSSI data is initially taken as 
input. Then, a TransTM model is employed, which 

is a combination of multi-scale transformer and 
convolutional networks. This model is used to learn 
behavioral features for the detection of various 
activity categories. 

In this paper, the transformer is utilized as a pre-
trained model and serves as a key component for 
understanding global information in the inputs. The 
performance of the model is evaluated using four 
evaluation metrics: recognition accuracy, F1-score, 
which is the harmonic mean of precision and recall, 
the number of floating-point operations per second 
(FLOPs), and the number of parameters. These 
metrics are employed for a comprehensive 
evaluation of the model's performance. 

Wensel et al. [86], report the TransTM model 
has shown the best performance in HAR through the 
collection of RFID data compared to other advanced 
models. This model demonstrates a very high 
detection accuracy (99.1%) and has achieved better 
results compared to ordinary models. 

In another study  [95], researchers employed a 
lightweight transformer, as the main architecture for 
HAR classification and the TransFed model with a 
dual-layer transformer and a learning rate of 0.01 
using the Adam optimizer. Additionally, a parameter 
for the number of blocks in the transformer was 
utilized. The learning transfer of TransFed was 
applied for joint learning in a federated environment. 
This configuration ensures that the model is 
collectively trained on different devices while 
preserving privacy. 

The model's performance was evaluated through 
extensive experiments in two environments (union 
and central) using a newly created dataset by the 
researchers. Additionally, a public dataset called 
WISDM was used for model evaluation. Common 
evaluation metrics for machine learning models, 
including accuracy, precision, recall, and F1 score, 
were employed. 

According to the results reported in the paper, 
the proposed lightweight transformer model has 
shown the best performance compared to CNN and 
RNN-based models in the evaluation metrics. 
Additionally, in the union environment, the 
lightweight transformer has also shown 
improvement in terms of privacy. In other words, 
this model has successfully performed in joint 
learning and privacy preservation for edge devices. 

Chen et al. introduced a new model for detecting 
human movements in images using a transformer to 
extract and integrate multi-scale behavioral 
information [96]. The model is pre-trained using a 
Swin-Transformer base network and incorporates a 
feature integration module to extract and integrate 
multi-scale behavioral information. This model has 
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demonstrated high accuracy in detecting human 
movements in images. 

The authors have utilized a Feature Fusion 
Module to enhance performance. This module is 
designed to prevent dependence on the last layers 
and integrate features from different stages of the 
image. to evaluate the model's performance, they 
have employed five different datasets, including Li-
6, PPMI-24, Stanford-40 Action, Distracted Driver 
V1, and Distracted Driver V2. The results indicate 
that the Swin-Fusion model, utilizing a combination 
of the Feature Fusion Module and transformer 
optimization techniques, exhibits a more 
competitive performance compared to previous 
methods. 

A hybrid approach has been employed 
combining multi-scale CNN and transformers to 
detect human activities and determine their start and 
end times [97]. In multi-scale convolution modules, 
transformers are employed to capture global 
features. This transformer is implemented with 
multi-scale convolutional transformer blocks. 

To evaluate the model, the CSI dataset collected 
by Google Nexus 5 has been used. This dataset 
includes seven different human activities such as 
falling, sitting, walking, etc., performed in indoor 
environments. The proposed model has shown very 
good performance, achieving a weak micro F1 score 
of 98.37% and a strong micro F1 score of 92.81%. 
These results exhibit a significant improvement 
compared to the compared models (such as CNN, 
LSTM, ABLSTM, and ResNet18), indicating that 
the combination of CNN and Transformer as a 
hybrid approach is effective for HAR in CSI data. 

5.6. Multimodal Transformer 

In a recent study by Djenouri et al. a new method 
introduced called CVTN (Convolution Visual 
Transformer Network) for detecting and analyzing 
human activities from sensor data  [98]. The CVTN 
method leverages the combination of two deep 
learning architectures, namely CNN and the Visual 
Transformer (VT) for image transformation. 

The CVTN operates in two phases. In the first 
phase (Spatial Visual Learning), it focuses on 
learning spatial visual features from sensor data 
using CNN. Specific techniques are employed to 
transform temporal data into images. In the second 
phase (Temporal Learning), a transformer-based 
network is utilized to detect temporal dependencies 
in the sequence of spatial features. This paper uses 
the Kinetics dataset, which includes over 650,000 
short videos covering 400 human activity categories. 

using the accuracy metric, they represent how 
well the CVTN model is capable of correctly 
detecting human activities. In comparison to existing 

baseline methods such as DST-LSTM and 
Hybridnet, it demonstrates higher accuracy. 

As described in [99], the authors have employed 
a novel method called the 'Two-Stream Transformer 
Network (TTN) for addressing HAR tasks. This 
approach utilizes the transformer architecture and 
two streams, namely Temporal and Spatial, to model 
temporal and spatial dependencies in multi-sensor 
sensory signals. 

In this architecture, the transformer is used 
simultaneously in two streams to model temporal 
and spatial dependencies. This use of the 
transformer enables the model to effectively justify 
both temporal and spatial dependencies and 
integrate information from multiple sensors into its 
architecture. One important dataset in this paper 
includes the sensor attention block in the spatial 
stream, which has the ability to focus on the 
importance of sensor axes. It assists the model in 
extracting crucial information and making the best 
use of it. 

To evaluate the performance of the proposed 
method, the authors used common metrics such as 
Macro F1-score on four different datasets. The 
results indicated that the proposed TTN model 
outperforms comparative models such as CNN, 
LSTM, ConvLSTM, ConvAE, and Transformer 
Encoder, especially in cases where information is 
collected from various sensors and different 
locations. 

In another research, a method called "MATN" 
(Multi-Agent Attention-based Temporal Network) is 
employed for multi-sensor HAR [100]. The MATN 
method utilizes multi-agent attention to extract 
spatiotemporal features from multi-sensor data. The 
authors have utilized transformer networks to 
encode multi-sensor data. 

1. Representation Learning Layer: A visibility 
learning layer is utilized to encode multi-
sensor data into a unified representation. 

2. MSTT (Multi-Agent Spatio-Temporal 
Transformer) Module: This module employs 
a transformer network to extract 
spatiotemporal features from each sensor. 

3. Multi-Agent Collaboration Module: This 
module gathers the output from each agent 
(associated with each sensor) and learns to 
select effective sensors. 

The transformer is employed as a key 
component of the MSTT Module. This network 
functions as a Spatio-Temporal Transformer model 
to extract spatial and temporal features from multi-
sensor data. 

The final results have shown that MATN 
performs well in extracting spatial-temporal features 
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from multi-sensor data and has the ability to 
generalize to various types of data. It demonstrates 
this capability even in cases where only specific 
sensors have been used. 

Li et al. have employed a multi-modal HAR 
method called DMFT (Distilled Mid-Fusion 
Transformer) [101]. This approach utilizes multiple 
detection stages. A Unified Encoding Layer is used 
for each modality, such as RGB, Depth, Skeleton, 
Inertial, and Wi-Fi data. This layer provides a 
unified representation for input data from each 
modality, without the need for modality-specific 
encoder networks, yielding a consolidated feature 
representation. 

The Multi-Modal Spatial-Temporal Transformer 
(MSTT) module utilizes the transformer encoder 
structure to extract spatial and temporal features for 
each modality. This module highlights the 
advantages of transformer-based structures over 
LSTM and employs self-attention mechanisms to 
enhance the extraction of salient features. The 
Temporal Mid-fusion Transformer Module (TMT) 
is a transformer module  

designed to fuse multi-modal temporal features 
at the mid-fusion stage in the feature extraction 
process. 

The results of this paper have been evaluated on 
two multi-modal datasets, UTD-MHAD and 
MMAct, under various settings. Different evaluation 
metrics have been used for each dataset, including 
Top-1 accuracy for the UTD-MHAD dataset and 
F1-Score for the MMAct dataset. The results 
indicate that the DMFT method outperforms other 
methods and has demonstrated effective 
performance in resource-constrained environments. 

Table 2  provides a concise overview of recent 
studies exploring the application of Transformer 
models in HAR. These studies highlight the 
effectiveness of Transformers in modeling complex 
spatiotemporal relationships and demonstrate their 
superiority over traditional models across various 
tasks. Key takeaways include: 

• Diverse Applications: Transformers are 
utilized for tasks ranging from gesture 
recognition and activity detection to multi-
modal feature extraction and time-series 
analysis. 

• Improved Accuracy: Most models 
outperform conventional methods, 
achieving high accuracy and robustness in 
different datasets and settings. 

• Challenges: Limitations such as dependency 
on large datasets, imbalanced data, and 
computational complexity persist, 
necessitating further innovations. 

The table emphasizes the potential of 
Transformers to revolutionize HAR, particularly 
with continued integration of advanced techniques 
and tailored model designs. 

6. Challenges in using Transformers in Har 

Transformers have demonstrated significant 
potential in HAR, but their application comes with 
specific challenges that require careful 
consideration. One major issue is data quality and 
noise, as HAR datasets often include noisy or 
overlapping activities and similar behaviors that 
reduce model accuracy. Transformers address this 
by using attention mechanisms to focus on relevant 
data sections, extracting key features to mitigate 
noise and improve performance. Another challenge 
is the limited availability of labeled data, as 
acquiring labeled HAR datasets can be both time-
intensive and expensive. Techniques such as self-
supervised and semi-supervised learning enable 
Transformers to learn effectively from sparse or 
unlabeled data, reducing reliance on extensive 
labeled datasets. 

Variations in activities and environments also 
pose a problem, as they can affect the 
generalizability of models. By leveraging attention 
mechanisms, Transformers can simulate 
environment-specific features and adapt to new 
contexts through transfer learning, enhancing their 
versatility. Additionally, HAR models must cope 
with variable data, including sudden shifts in 
behavior or data patterns. Transformers excel in 
modeling long sequences, allowing them to adapt to 
both gradual and abrupt changes in data dynamics. 
In complex scenarios, such as those involving 
overlapping activities or diverse features, 
Transformers can model intricate relationships 
between features, enabling better management of 
overlaps and interdependencies. 

However, computational demands remain a 
concern, especially for resource-constrained devices 
like IoT systems and smartphones. Optimization 
techniques, such as model pruning and quantization, 
can significantly reduce resource requirements 
without sacrificing performance. Privacy and 
security are also critical in HAR, as the data often 
involve sensitive personal information. Federated 
learning addresses this by enabling data processing 
on local devices, reducing the need for data transfers 
and enhancing privacy. Lastly, model 
interpretability is essential, particularly in 
applications like healthcare, where trust in model 
decisions is vital. Visualization techniques and 
attention maps can improve interpretability, making 
model decisions more transparent. 

To effectively implement Transformers in HAR, 
especially on resource-constrained systems, it is crucial 
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Table 2. Summary of some recent studies on transformer-based HAR 

findings Limitation Assessment Data collection 
Sensor 

model 
Methodology Year Name  

V
an

il
la

 

Due to the mechanism of self-

attention in sensor sequence 

processing and activity 

detection better than traditional 

models 

Small sample size 
Accuracy 0.659 

f1 score 0.964 
Casas-Aruba 

environmen

tal 
Seq2Seq 2023 

Xinmei 

Huang  
[24 ]  

1 

Gesture recognition based on 

accelerometer and gyroscope 

data 

Need for more extensive data 

sets 
Accuracy  99.56 

C.MHD,CMDFA

LL,DALiAc 
inertia 

sliding window 

Diagnosing 

operation with 

a transformer 

2022 

Trung 

Hieu 

Le[77] 

2 

Transformer and combined 

characteristics of 

spectrographs and... 
Imbalanced data set 

Accuracy 98.2, 98.6 

and 97.3 
WISDM,PAMPA

2,UCIHAR 

Peripheral

, 

wearable, 

wireless 

(mobile) 

Enhanced data 

technique 
2023 

Saidani 

[78] 
3 

Proper display of spatio-

temporal features,Setting pairs 

of FAttn, ZAttn and BAttn 

modules. 

Low number of data Accuracy 98.7 
Penn-Action , 

NTU-RGB+D 

Video and 

skeleton-

based 

frames 

Transformer 

STAR 
2023 

Dasom 

Ahn  
[79 ]  

4 

Extractor with transformer to 

map sensor data to a common 

feature space 

Ability to recognize mutual 

activities 

improved 3.08, 3.89, 

3.39 percent points of 

accuracy, 

Fw, and Fm over the 

best state-of-the-art 

method 

Opportunity 

PAMAP2, 

MHEALTH و 

RealDISP 

wearable 

TASKED 

Transformer-

based 

adversarial 

learning 

2022 
Sungho 

Suh[80]   
5 

The TBAC module enhances 

the performance of CNNs by 

leveraging temporal features 

and balanced attention. 

 

The use of pre-trained 

weights and the TBAC’s 

dependency on a suitable 

base network limit its 

generalizability. 

 

Accuracy 85.23 and 

83.73 

HAA500,HMDB5

1 
video 

TBAC: 

Transformers 

Based 

Attention 

Consensus 

2022 

Santosh 

Kumar 

Yadav 

[81] 

6 

Extraction of spatio-temporal 

geometric features from 3D 

skeletal joint information 

Dependency on precise 

skeletal data and evaluation 

on small datasets limits the 

applicability of the method. 

 

Accuracy 93%  

KARD ،Florence 

3D ،UTKinect 

Action 3D و   MSR 

Action 3D 

3D 

skeleton 

image 

Model only 

based on 

transformer 

encoder 

2022 

Ahmed 

Snoun 

[84] 

7 

V
is

io
n

-B
as

ed
 the six SSTNs streams are 

complementary to each other, 

and fusing them bring better 

performance 

Evaluation is limited to the 

MPII dataset and lacks 

advanced pooling methods. 

 

accuracy Detail level 

SSTN for VGG-

F,VGG-M,VGG-16 

29.91,31.09,32.32% 

MPII 
Cooking  

Activities Dataset 

the video 

esupervised 

spatial 

transformer 

networks 

(SSTNs) 

2019 
Dichao 

Liu [85] 
8 

ViT-ReT combines ViT and 

ReT to deliver faster and more 

accurate performance 

compared to previous models. 

 

 

Lack of full utilization of 

parallel processing and 

weaker performance of 

Vision Transformer 

compared to ResNet50 in 

certain tasks. 

 

Accuracy (up 

to52.64%) 

and inference time 

(up to 38.2% on 

average) 

YouTube action, 

UCF50, UCF101, 

and HMDB51 

the video 

Combining 

ViT and ReT 

with 

complexity 

reduction. 

 

2023 

James 

Wensel 

[86] 

9 

During the self-calibrating learning 

process, it regularizes attention 

modules and dynamically adjusts 

the learning rate . 

Increasing the number of 

parameters due to the existence of 

an attention scheme requires 

training 

Accuracy for 

MHEALTH,USC-

HAD, WHARF, 
UTD-MHAD1, 

UTD-MHAD2 1,0.95  
,0.92,0.64,0.8421 

MHEALTH ،USC-

HAD ،WHARF  ،
UTD-MHAD1, 2 

environmen

tal 

Transformer-

based deep 

inverse attention 

network 

2023 

Rishav 

Pramani

k [87] 

10 

In
v

er
se

 

Filter unbalanced data in the 

transition window and initial 

classifier of associated features 

Low data complexity due to the 

small number of residents 

The best accuracy 

results for Milan, 

Kyoto8,Kyoto11 

datasets,0.88,0.92,08

0 

Casas: 
milan,kyoto8, 

kyoto11 

environmen

tal 

A transformer 

encoder, based on 

the attention 

mechanism, as a 

filter network 

2023 

Tae-

Hoon 

Lee [88] 

11 

S
el

f-
A

tt
en

ti
o
n

 

It performs better without the 

need for segmentation and 

increases accuracy . 

Model training with more 

diverse and newer data 
On average, RMSE is 

5.5 

Lower extremity 

biomechanics 

dataset 

Wearable 

inertia 

BioMAT 

BERT 

architecture 

with an 

encoder 

2023 

Sharifi-

Renani 

[89] 

12 

An OCR network for detecting 

motion types without time 

Data imbalance and reliance 

on augmentation limit 

generalizability 
Accuracy 94% 

Continuous 

motion on micro-

Doppler features 

Radar 

based 
Detection of 

continuous 
2023 

Liubing 

Jiang 

[90] 

13 

Radar-based point cloud 

processing improves accuracy 

and performance 

Small dataset size and high 

manual labeling cost limit 

model accuracy and 

generalizability. 

F1 score 92.8% 
Experimental 

dataset 

DelftTU 

Image 

Three models 

of self-care 

(point 

transformer) 

2023 

Zhongy

uan Guo 

[91] 

14 

Time series processing for 

feature extraction from 

smartphone sensor signals 

Data imbalance and reliance 

on augmentation limit 

generalizability. 
Accuracy 99.2% KU-HAR dataset 

wearable 

(smartpho

ne) 

Parallelization 

and fast 

computation of 

time series 

2022 
Luptáko

vá [92] 
15 
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findings Limitation Assessment Data collection 
Sensor 

model 
Methodology Year Name  

H
y
b
ri

 

It receives low quality data and 

avoids the data cleaning process 

Dependence on custom data and 

high computational cost limit the 

model's generalizability. 
Accuracy 99.1% RFID 

environmen

tal 

TransTM 

Multiscale 

transformer and 

Cnn 

2023 
Yi Liu 

[94] 
16 

The model is trained collectively on 

different devices while maintaining 

privacy. 

Dependency on custom data and 

high resource requirements limit 

generalizability. 
Accuracy 98.74% WISDM wearable 

A lightweight 

transformer and 

TransFed model 
2021 

Ali Raza 

[95] 
17 

Swin-Fusion combines fusion 

module and transformer 

optimization techniques 
The smallness of the data set Li-6 

Accuracy 

100,97.69,96.24,94.41,9

2.33% 

Li-6 ،PPMI-24  ،
Stanford40 ،AUC 

V1,AUC V2 

Image 
Swin-

Transformer 2023 

Tianshe

ng Chen 

[96] 

18 

Combination of CNN and 

transformers to identify human 

activities and determine start and 

end times 

Dependence on WiFi data and the 

impact of environmental factors 

limit the model's applicability. 

 

Weak micro F1 score of 

98.37% and strong of 

92.81% 
CSI 

environmen

tal 

Transformers to 

record global 

characteristics 
2022 

Dejun 

Gao 

[97] 

19 

Transformer to extract spatial and 

temporal features for each modality 

Intersubject variability in the 

detection of multimodal human 

activities 

Top-1 accuracy for 

UTD-MHAD more 

than96% and F1-Score 

for MMAct more 

than91% 

UTD-MHAD و 

MMAct 

RGB  ،
Depth ،

Inertial  و 

Wi-Fi 

DMFT (Distilled 

Fusion 

Intermediate 

Transformer) 

2023 

Jingche

ng Li 

[101] 

20 

M
u
lt

i 
m

o
d
al

 

Transformer simultaneously in two 

currents to model temporal and 

spatial dependencies 

Weaker performance in short-

duration similar activities and 

instability due to reliance on 

positional encoding. 

Score 1F macro, 0.99 

0.69, 0.56 and 0.95 

USC_HAD 

،Opportunity 

،PAMAP2 و Skoda 

Multimod

al sensor 

Two current 

transformer 

network (TTN) 
2022 

Shuo 

Xiao 

[99] 

21 

Extracting spatio-temporal features 

from multi-sensor data and the 

ability to generalize to all types of 

data 

Limited scalability and sensitivity 

to noisy data. 

Accuracy for UTD-

MHAD,92.72%, F1-

Scorefor 

MMAct,91.85% 

UTD-MHAD , 

MMAct 

Multimod

al sensor 

MATN-A 

temporal network 

based on 

multifactorial 

attention 

2022 

Jingche

ng Li 

[100] 

22 

 

design lightweight and compact architectures. These 
architectures should balance minimal resource 
consumption with high accuracy and efficiency in 
activity recognition, ensuring they meet practical 
constraints while maintaining strong performance. 

By addressing these challenges, HAR models 
leveraging Transformers can achieve higher 
accuracy, adaptability, and efficiency, ensuring 
robust activity recognition even in complex 
scenarios. 

7. Conclusions 

In this review, we have provided a 
comprehensive overview of the transformative 
impact of transformer-based architectures on HAR. 
Our analysis of recent studies since 2019 highlights 
the significant advancements made in leveraging 
transformers to enhance the accuracy and efficiency 
of HAR systems. The ability of transformers to 
model long-term dependencies and process complex 
input data in parallel has opened new avenues for 
research and application in smart environments. 

We explored various innovative architectures, 
including attention-based, vision-based, and hybrid 
models, demonstrating their unique capabilities in 
handling diverse data types from sensor-based and 
vision-based technologies. Additionally, our review 
emphasized the critical role of datasets in training 
effective HAR models, underscoring the need for 
high-quality, diverse data to support robust model 
performance. 

Despite the advancements in transformer 
architectures for HAR, several challenges must be 
addressed to fully leverage their potential. Key 
issues include the high computational resource 

requirements, the need for model interpretability, 
and the ability to generalize across diverse 
environments. Future research should prioritize the 
development of lightweight transformer models that 
deliver robust performance while being optimized 
for real-time applications on mobile and embedded 
devices. 

Additionally, innovative techniques such as self-
supervised and federated learning should be 
explored to mitigate reliance on labeled datasets and 
address privacy concerns. These methodologies can 
enhance the applicability of transformers in real-
world scenarios, particularly in environments 
characterized by varying sensor data and user 
behaviors. 

It is essential for future studies to investigate 
cross-domain adaptation strategies that enable 
models trained in one context to effectively 
generalize to others. As HAR increasingly 
incorporates diverse data sources, including 
wearable sensors, cameras, and environmental 
sensors, research should focus on multimodal fusion 
techniques. These approaches can improve the 
integration of varied inputs, thereby enhancing 
recognition accuracy and system robustness. 

The inherent black-box nature of transformer 
models presents challenges in understanding their 
decision-making processes. Therefore, future work 
should emphasize developing methods that enhance 
model interpretability, allowing researchers and 
practitioners to discern how specific features 
contribute to activity recognition outcomes. 

Moreover, optimizing transformers for real-time 
processing capabilities is crucial for their practical 
deployment in smart environments. This includes 



International Journal of Web Research, Vol. 7, No. 4, 2024 

96 

investigating efficient training algorithms, 
minimizing inference latency, and implementing 
online learning techniques that enable models to 
adapt continuously to new data. 

Finally, addressing ethical considerations related 
to privacy and data security is paramount. Future 
research should explore frameworks that ensure user 
consent, data anonymization, and secure data 
handling practices within HAR systems. 

In conclusion, the future of transformer-based 
approaches in HAR is promising. By tackling these 
challenges and pursuing these research directions, 
we can significantly enhance the effectiveness of 
HAR systems, fostering innovative applications that 
improve safety, efficiency, and quality of life in 
smart environments. 
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