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A B S T R A C T  

Early cancer detection is crucial for improving patient survival rates, as timely intervention greatly enhances 

treatment efficacy. One promising method for early detection is identifying cancerous cells through the 

detection of protein-level modifications, which serve as early indicators of malignancy. These protein 

modifications often result from complex biochemical processes that occurs before visible cellular abnormalities, 

making them critical targets for diagnostic technologies. In recent years, wireless biomedical sensors have 

advanced significantly, enabling precisely detecting these protein-level changes. These sensors have the potential 

to detect cancer at its earliest stages by monitoring the subtle alterations in protein structures and functions 

that distinguish healthy cells from cancerous ones. As the costs of genetic analysis continue to decrease, the 

development of Medical Internet of Things (MIoT) devices has become increasingly feasible. These devices are 

designed to perform real-time analyses of biological specimens—such as blood and urine—by detecting protein-

level changes indicative of cancer. In this paper, a new machine learning method based on Extreme Randomized 

Trees (ERT) is developed to increase the speed of classification of cancerous cells based on single-cell Assay for 

Transposase-Accessible Chromatin using sequencing (ATAC-seq). The proposed method enhances the 

classification speed of the limited and noisy ATAC-seq data as it requires less computation to determine the 

best splits at each node of the decision trees. This method can significantly improve near real-time cancer risk 

assessment using samples collected by MIoT. Our proposed method achieves classification accuracy comparable 

to state of the art single-cell ATAC-seq data analysis techniques while reducing processing time by 259%, 

challenged by various low-data scenarios. This approach presents an efficient solution for rapid cancer 

monitoring within the MIoT framework.  

Keywords— Single cell ATAC-seq, Machine Learning, Extremely Randomized Trees, Classification, Early cancer 

detection, Biomedical IoT devices. 
 

1. Introduction 

Gene expression, the complex process through 
which genes are translated into proteins, is 
fundamental for cellular growth, development, and 
normal physiological function. A critical component 
in regulating gene expression is the suite of proteins 
that bind to DNA and facilitate its transcription. 
These transcription factors exert regulatory control 
over gene expression at multiple levels, including the 
activation or control of gene expression, modulation 
of the rate of gene transcription, and alteration of the 
type of protein synthesized from a given gene. The 

understanding of transcription factors is pivotal for 
explaining the mechanisms governing gene 
expression under various conditions, thereby 
enabling the development of innovative therapeutic 
strategies for disease treatment and enhancement of 
human health. 

Concurrently, chromatin accessibility, which 
concerns the structural configuration of DNA and its 
associated proteins, indicates the extent to which 
DNA is exposed to transcription factors. This metric 
is instrumental in identifying transcription factors and 
revealing gene regulatory mechanisms. The Assay 
for Transposase-Accessible Chromatin using 
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sequencing (ATAC-seq) is a sophisticated molecular 
biology technique employed to evaluate chromatin 
accessibility across the genome of a cell. 
Furthermore, advancements in genetic research tools 
now permit the analysis of individual cells instead of 
bulk cell populations, thereby providing 
unprecedented granularity in genetic studies. 

With the advent of machine learning 
methodologies, the voluminous data generated from 
molecular biology experiments can be analyzed fast 
and with high precision. This facilitates a more 
profound comprehension of various diseases and the 
development of novel therapeutic interventions. In 
this research, a novel classification method for single-
cell ATAC-seq (scATAC-seq) data is proposed and a 
comparative analysis of its performance against 
existing classification methodologies is presented. 

This is an emerging field of research that focus on 
the identification of different cell types including 
different cancerous cell types from different stages 
throuth the patterns in the chromatin accessibility of 
their DNA using scATAC-seq data and machine 
learning algorithms. These methods can help the 
diagnosis and prognosis process by early detection of 
malignancy and personalized therapy for the patient. 
The classification algorithm is a critical bottleneck in 
the ATAC-seq classification of cancerous cells. The 
recently presented state-of-the-art algorithms have 
achieved this goal with high accuracy, but the speed 
of classification is a significant problem in these 
algorithms along with keeping accuracy at high 
levels. The main novelty of the proposed method in 
this paper is improving the speed of classification by 
an average of 259% while maintaining the accuracy 
of the state-of-the-art methods. Moreover, this novel 
technique has been tested in four independent 
scATAC-seq datasets. Moreove the robustness of the 
proposed method on training data volumne 
examined. 

2. Literature Review 

The advent of biosensor technology is 
transforming the healthcare landscape by enhancing 
disease diagnostics and enabling continuous 
monitoring of patient's vital parameters in real time. 
Leveraging the nano-technological innovations, 
Ibrahim et al. [1] have introduced an innovative 
biosensor that employs a miniaturized, chip-
integrated CRISPR/Cas system to interact with a 
patient's DNA sample. The resultant signal is 
subsequently digitized and securely stored in a cloud-
based infrastructure. Advanced machine learning 
algorithms then process this data, whether in the 
images or numerical values, to discern patterns that 
can assist medical professionals in making informed 
clinical decisions. 

Presenting an application of IoT's within the 
biological sciences, Parks et al. [2] present an IoT 

framework for cell biology investigations. Their 
approach involved the fabrication of specialized 
experimental apparatuses, including 
electrophysiology setups, microscopy tools, and 
microfluidics systems, all orchestrated through a 
cohesive control mechanism predicated on Raspberry 
Pi technology. This architecture facilitates real-time 
oversight and modulation of experiments, giving 
automation capabilities, and providing continuous 
updates on experimental integrity. The data harvested 
from these laboratory instruments undergoes a 
meticulously designed analytical pipeline. The 
analytical outcomes are subsequently rendered via 
Plotly Dash for visualization purposes and are made 
accessible to end-users through a web-based 
interface. Furthermore, the architecture is engineered 
to enable other researchers to access the analytical 
results in the cloud, utilizing platforms such as 
Nextflow. 

Another significant issue in this domain is the 
safeguarding of user data privacy. To mitigate 
security challenges in communication, Ugandaran et 
al. [3] introduced an innovative cryptosystem 
inspired by DNA computing and the splicing system. 
This methodology capitalizes on biological 
information gathered by IoT devices such as Arduino. 
Before encryption through the contextual array 
splicing system, the input string is transmuted into a 
DNA sequence via a DNA sequencing mechanism. 
Upon the information's transfer to the cloud, the 
decryption process employs a binary sequencing 
system to revert the data from the DNA format, 
followed by a modified contextual array splicing 
system. Subsequently, predefined algorithms are 
utilized to analyze the cloud data for interpretation. 
Essentially, their approach harnesses the potential of 
biological data to fortify communication security. 

Contemporary implementations of Internet of 
Things (IoT) technologies within the medical domain 
face many challenges. These challenges can be 
principally categorized into several domains: the 
capability for real-time data processing, the security 
of communication channels and data storage, the 
preservation of user rights, and the identification of 
optimal technologies for the collection and precise 
real-time analysis of diverse patient-related data. 

In recent years, novel methodologies and 
software tools have been developed to mitigate the 
limitations of current DNA analysis. Chromatin 
accessibility analysis has become a potent technique 
for clarifying the epigenetic landscapes of diverse cell 
types. Initially, DNase-seq and FAIRE-seq were the 
leading technologies for chromatin accessibility 
analysis, yet substantial input requirements 
constrained their therapeutic application. The advent 
of ATAC-seq in 2013 [4] revolutionized chromatin 
accessibility analysis owing to its streamlined 
protocol involving the insertion of the Tn5 
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transposase via PCR, necessitating minimal sample 
volumes. Critically, the capacity to analyze single-
cell data emerged as the quintessential advantage of 
this method. Independent research groups under the 
terms "scATAC-seq" and "sciATAC-seq" in 2015 [5, 
6], showcased this capability in their studies. 
Augmenting its potential further, the recent 
innovation of droplet-based single-cell combinatorial 
indexing for ATAC-seq (dsciATAC-seq) enables 
extensive, high-throughput epigenomic profiling at 
the single-cell level [7]. 

In tandem with the advancement of single-cell 
ATAC-seq, a plethora of analytical methodologies 
have been developed to interrogate single-cell 
epigenomes with unprecedented granularity. 
Nevertheless, the intrinsic high dimensionality and 
sparsity characteristic of single-cell ATAC-seq data 
pose substantial computational challenges when 
contrasted with single-cell RNA-seq data. To 
mitigate the issue of sparse scATAC-seq data, 
researchers have introduced a variety of machine 
learning paradigms, encompassing both unsupervised 
and supervised strategies. Among these, chromVAR 
stands out by leveraging the spatial distribution 
patterns of transcription factor (TF) occurrences 
within open chromatin regions. It employs t-SNE for 
dimensionality reduction, projecting corrected 
deviation vectors of individual cells onto a two-
dimensional plane. This facilitates the visualization 
of different cell types by their distinct TF binding 
profiles. Moreover, chromVAR's utility extends to 
the analysis of k-mer frequencies, enabling the de 
novo identification of novel and unannotated 
regulatory motifs [8]. Similar to chromVAR, 
BROCKMAN method also utilizes k-mer 
factorization to address this challenge [9]. SCARAT 
method capitalizes on established features such as TF 
motifs, ENCODE clusters, and MSigDB gene 
categories, thereby enabling the efficient and accurate 
extraction of biologically relevant information from 
single-cell data [10]. Distinctively, scABC exploits 
the inherent structure of read count patterns in 
genomic regions for unsupervised k-medoid 
clustering of cells, removing the necessity for 
unimportant information [11]. 

Natural Language Processing (NLP) 
methodologies offer sophisticated tools for probing 
single-cell chromatin accessibility datasets. An 
investigation by Cusanovich et al. used the 
capabilities of Latent Semantic Analysis (LSA) to 
discern discrete cellular clusters within an extensive 
single-cell atlas of murine organs, thereby 
underscoring the utility of NLP techniques in the 
clarification of intricate biological phenomena [12]. 
Additionally, the cisTopic framework shows an 
advanced probabilistic approach aimed at defining 
co-accessible enhancers and identifying robust 
cellular states. This framework integrates latent 
Dirichlet allocation (LDA) with a collapsed Gibbs 

sampling algorithm to infer and characterize distinct 
cis-regulatory motifs within the dataset [13]. 

Cicero et al. [14] have conceptualized a 
sophisticated machine-learning framework that 
incorporates a graphical lasso to enhance the 
precision of predicting cis-regulatory DNA 
interactions, thereby marking a substantial 
progression in clarifying genomic regulatory 
networks. By adopting a methodology that joins 
single-cell data aggregation with similarity-based 
sampling. Cicero effectively quantifies the co-
variation among potential regulatory elements. These 
elements are subsequently associated with their 
respective target genes by applying unsupervised 
machine-learning algorithms. The innovative merit of 
this approach is underscored by its capacity to 
generate predicted interactions that exhibit a 
significant similarity with independent 3D chromatin 
conformation datasets, such as ChIA-PET and Hi-C. 
Extending its analytical purview, Cicero leverages 
single-cell ATAC-seq data not only to predict gene 
expression and 3D chromatin architecture but also to 
investigate chromatin accessibility [15].  

In other researchs some user friendly tools 
developed to facilicate the analysis of scATAC-seq 
data. For instance Scasat [16] and Snap ATAC [17] 
developed to facilitate the analysis of ATAC-seq 
data. However, the present paper is a continuation of 
our previous work [18]. In this paper, we compare our 
novel method performance with a deep neural 
network approach and test our model feasibility in 
various input data amounts. 

In recent years, the advent and pervasive 
application of deep learning methodologies have 
significantly impacted the analysis of ATAC-seq 
data, which is characterized by high dimensionality, 
sparsity, and a binary nature. To address 
mentionedchallenges, novel approaches leveraging 
deep learning have been proposed. Among these, the 
method known as SCALE, introduced by Xiong et al. 
[19], has gathered attention for its efficacy in 
analyzing single-cell ATAC-seq (scATAC-seq) data 
through latent feature extraction. SCALE mitigates 
extant issues by reducing data noise and imputing 
missing peak signals, thereby recovering incomplete 
data. Furthermore, this method excels in 
dimensionality reduction, offering superior 
representation to traditional techniques such as 
Principal Component Analysis (PCA) and Latent 
Semantic Indexing (LSI). Despite these advantages, 
SCALE has limitations; it presumes a constant read 
depth and neglects batch effects, necessitating the 
development of an enhanced method named SAILER 
[20]. SAILER aims to provide a more scalable and 
accurate learning framework, addressing the 
shortcomings identified in SCALE. 

Tan et al.[21] introduced a multimodal deep 
learning model that combines one-dimensional 
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genome sequence data with three-dimensional 
chromatin structures to improve the prediction of 
non-coding variant effects on epigenetic profiles. The 
model, which integrates convolutional, dense, and 
graph neural networks, exceeds sequence models 
using long-range interactions and is very effective in 
predicting genetic expression and pathogenicity in 
various learning environments. Also, Jing [22] 
introduced the Single-Cell Deep Topology 
Embedded Characterization (scDTEC) model, which 
combines chromatin accessibility profiles and 
cellular topology with low-dimensional 
representation to improve the clustering of single-cell 
scATAC-seq data. Using a topology variation 
autoencoder and a joint optimization approach, 
scDTEC effectively addresses technical problems 
such as noise and data shortages, surpassing other 
advanced methods in the accurate partition of cell 
groups.  

Ding et al. [23] present DeepSTF that is a 
complex learning model that uses a unique 
combination of convolutional neural networks, 
improved transformer encoders, and Bi-LSTM to 
predict the binding sites of transcription factors 
(TFBS) and integrate DNA sequence data with DNA 
shape profiles. Experiments with 165 ENCODE 
ChIP-seq datasets have shown that DeepSTF 
significantly outperforms existing models and 
demonstrates the critical role of DNA shape 
characteristics and transformer encoders in capturing 
complex dependencies and improving prediction 
accuracy. Ramakrishnan et al. [24] have developed a 
tool called DeepRegFinder, which is a customizable 
tool that automates the identification of regulatory 
elements such as enhancers and promoters by using 
histone-marking ChIP-seq data, with greater 
precision and recall than existing methods. 
DeepRegFinder uses convolutional and repeated 
neural networks and categorizes these elements into 
active and positioned states, rationalizing genomic 
analysis for multiple cell types.  

Cellcano [25] is a new computational method that 
uses a two-stage supervised learning algorithm to 
accurately identify cell types from data on scATAC-
seq and addresses the growing need for specialized 
tools in this field. Cellcano effectively manages 
distribution changes between reference and target 
data. It exhibits high accuracy, robustness, and 
efficiency for 50 standardization tasks, making it a 
valuable tool for epigenetic analysis in single-cell 
studies. Cellcano uses two-step supervision learning 
processes, first predicting cell types using multilayer 
perceptron (MLP) and identifying well-planned 
target cells (anchors) to form a new training set. Then, 
a self-knowledge distillation model is trained on these 
anchors to accurately predict the cell types of the 
other non-anchored cells, thus improving overall 
prediction accuracy. 

2.1. ATAC-seq Applications 

ATAC-seq is a widely approach used to explore 
the molecular  mechanisms of cancer development, 
study immune cells for cancer immunotherapy, 
predict tumor stage and metastasis risks, and 
investigate targets for cancer treatment through drug 
studies. It plays a role in understanding the 
transcription factors involved in cancer progression 
and identifying potential therapeutic targets. Zhao et 
al [26] investigated applications of ATAC-seq on 
various types of cancer. Specific examples include 
acute myeloid leukemia, where different genetic 
mutations like CEBPA and FLT3-ITD have distinct 
prognostic implications. 

Another research [26] analyzes single-cell 
chromatin accessibility and gene expression in 
human breast tumors and healthy tissue, identifying 
potential cells of origin for different tumor types. It 
introduces a new method to link regulatory elements 
with gene expression changes, revealing that some 
elements shift from silencing genes in normal cells to 
enhancing them in cancer cells, leading to the 
activation of key oncogenes. Additionally, ATAC-
seq can be instrumental in characterizing the 
epigenetic features of CD8+ T cells (Tex), which are 
crucial in preventing bacterial infections and tumor 
development. Chen et al.'s work [27] examines the 
changes in chromatin accessibility and epigenetic 
characteristics of Tex following immune checkpoint 
blockade, as revealed by ATAC-seq. This research 
aims to uncover new therapeutic targets for persistent 
viral infections and cancer, while also offering fresh 
perspectives for designing effective immunotherapies 
to treat cancer and chronic infections. 

Overall, we can categorize the applications of 
ATAC-seq into five groups: 

• Cell type identification and heterogeneity: 
Examine chromatin accessibility profiles to 
distinguish cell types, investigate cellular 
heterogeneity, and detect rare cell 
populations. 

• Gene regulation and enhancer activity: 
Explore the regulatory landscape of individual 
cells, pinpoint active enhancer regions, and 
uncover interactions between chromatin and 
gene-regulatory elements to gain insight into 
gene expression regulation. 

• Cell differentiation and development: 
Examine how cells differentiate into various 
cell types, uncover the epigenetic mechanisms 
guiding cellular differentiation, and gain 
insights into cell fate determination. 

• Mechanisms of disease and pathology: 
Investigate disease-specific changes in 
chromatin accessibility, identify regulatory 
elements linked to diseases, and understand 
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the epigenetic mechanisms driving disease 
progression. 

• Integration with other omics data: Integrate 
single-cell ATAC-seq with techniques like 
single-cell RNA sequencing (scRNA-seq) for 
multi-omic analyses, providing deeper 
insights into gene regulation in cellular 
processes and disease. 

2.2. CTCs and Omics Data 

Circulating tumor cells (CTCs) facilitate the 
spread of cancer through the bloodstream, and their 
analysis can provide crucial insights into cancer 
metastasis. Ting et al. [28] used single-cell RNA 
sequencing to study CTCs in pancreatic cancer, 
identifying three distinct clusters with varying gene 
expression profiles. Notably, one cluster exhibited 
both epithelial and mesenchymal markers, stem cell-
associated genes, and, unexpectedly, extracellular 
matrix proteins, suggesting CTCs may carry their 
microenvironment. Despite the promise of single-cell 
RNA sequencing, current methods face limitations 
like low throughput and antibody dependence. The 
novel Hydro-Seq; method overcomes these 
challenges using size-based capture, high capture 
efficiency, and contamination-free microfluidic 
chambers, making it suitable for large-scale CTC 
analysis and potentially improving targeting 
strategies. 

2.3. Non-Invasive Sampling 

In a recent study by Zieren et al. [29], it was 
shown that CTCs can be used as non-invasive 
diagnostic biomarkers. The clinical landscape of 
renal cell carcinoma (RCC) is evolving, with an 
increasing prevalence of incidental and early-stage 
detections, thereby introducing novel diagnostic 
complexities. The advent of innovative diagnostic 
biomarkers capable of differentiating benign from 
malignant small renal masses (SRMs) holds promise 
for mitigating the risks of overtreatment. Unlike 
traditional tissue biopsies, liquid biopsies—derived 
from a patient’s blood or urine—are minimally 
invasive and facilitate longitudinal disease 
monitoring. The most promising liquid biopsy 
biomarkers for RCC diagnosis are circulating tumor 
cells, extracellular vesicles (EVs), and cell-free DNA. 
Circulating tumor cell assays exhibit the highest 
specificity, reduced processing time and cost-
efficiency. Nevertheless, their application in SRM 
diagnostics is constrained by inherent biological 
characteristics and limited sensitivity. 

In an alternative methodology for non-invasive 
biopsy delineated by Shi et al. [30], a groundbreaking 
integrated microfluidic chip has been developed to 
facilitate the sequential enrichment, isolation, and 
characterization of circulating tumor cells (CTCs) at 
the single-cell level. This innovative chip enables the 

analysis of individual CTCs within the same 
microfluidic platform. The chip is capable of blood 
clot filtration, single-cell isolation, identification, and 
the collection of lysates from targeted single cells. 
Validation experiments, wherein tumor cells were 
spiked into whole blood samples, demonstrated the 
chip's efficacy in performing RNA sequencing of 
single-cell CTCs. This approach establishes a robust 
foundation for comprehensively analyzing of RNA 
expression profiles in individual CTCs. 

Xu et al. [31] have developed a novel protocol for 
ATAC-seq data analysis that efficiently profiles 
chromatin accessibility at the single-cell level. 

This method combines bulk Tn5 transposase 
chromatin tagging with flow cytometric isolation of 
individual nuclei or cells, followed by the direct 
addition of sequencing library preparation reagents. 
The protocol produces high-complexity data with an 
excellent signal-to-noise ratio and supports 
comprehensive cell-type characterization via index 
sorting. The workflow, which takes one to two days, 
can process hundreds to thousands of nuclei and 
requires only basic molecular biology techniques and 
access to flow cytometry facilities.  

3. ATAC-seq and Algorithm Description 

The principal aim of this research is to introduce 
an innovative approach to ease the challenges 
associated with processing time , thereby advancing 
data analysis towards real-time applicability in edge 
devices within the realm of the Mobile Internet of 
Things (MIoT) in the foreseeable future. This study 
improves the computational time coupled with 
satisfactory accuracy in clustering single-cell ATAC 
sequencing data, leveraging a specific decision tree 
methodology known as Extreme Randomized Trees 
(ERT). The intrinsic noise and sparsity characteristic 
of scATAC-seq data poses formidable challenges for 
the precise extraction of biological signals and the 
formulation of robust hypotheses. 

Mammalian DNA is compacted into three 
hierarchical structures: nucleosomes, chromatin, and 
chromosomes, with chromatin transitioning between 
euchromatin and heterochromatin to regulate gene 
expression. High-throughput sequencing 
technologies, mainly ATAC-seq, introduced in 2013, 
have revolutionized the study of epigenetic 
mechanisms by enabling the analysis of chromatin 
accessibility. ATAC-seq has become widely adopted, 
contributing significantly to research on enhancer 
landscapes, chromatin changes during hematopoiesis 
and leukemia, and chromatin states in diseases such 
as schizophrenia and various cancers cataloged in 
The Cancer Genome Atlas (TCGA).  

ATAC-seq is a crucial technique for 
understanding chromatin architecture in specific cell 
types and its changes under pathological conditions, 
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it is notable for its efficiency with minimal cell 
numbers and lack of dependency on prior epigenetic 
knowledge. This study introduces a novel 
computational framework for classifying single-cell 
ATAC-seq data using supervised machine learning, 
achieving high accuracy with reduced computational 
costs compared to existing methods. Building on Guo 
et al.'s [36] comprehensive evaluation of six machine 
learning algorithms on scATAC-seq datasets, the 
proposed approach leverages the similarities in 
structure and feature selection between scRNA-seq 
and scATAC-seq data to enhance performance. 

The analysis of single-cell ATAC-seq (scATAC-
seq) data typically begins with unsupervised 
clustering to group cells based on chromatin 
accessibility profiles, focusing on identifying open 
chromatin regions, or "peaks". Cells are then labeled 
by cell type using marker genes within these regions, 
a process validated by prior research but hindered by 
the manual labor required for marker curation and 
cluster inspection, especially as datasets grow in size 
and complexity. To address these limitations, various 
machine learning classification methods like support 
vector machines, neural networks, and random 
forests have been adapted from scRNA-seq analysis 
for use in scATAC-seq.  

This study evaluates the performance of such 
methodologies on four independent scATAC-seq 
datasets, finding that the proposed method achieves 
accuracy comparable to state-of-the-art techniques 
while requiring significantly less computational time. 
The results suggest that this approach is efficient, 
accurate, and adaptable to diverse scATAC-seq 
datasets, making it a promising tool for single-cell 
chromatin accessibility analysis.  

In this investigation, we undertook a 
comprehensive performance assessment of six 
widely utilized machine learning algorithms—
namely, Support Vector Machines (SVM), K-Nearest 
Neighbors (KNN), Random Forests (RF), Linear 
Discriminant Analysis (LDA), Neural Manifold 
Clustering (NMC), and Decision Trees (DT)—for the 
automated identification of cell types in scATAC-seq 
data. Furthermore, to assess the performance of novel 
deep approaches, we compared the results with a 
dense neural network method in addition to the last 
six algorithms. The evaluation framework 
incorporated four publicly accessible scATAC-seq 
datasets encompassing a range of biological contexts: 
human immune cells (Corces2016), the human 
hematopoietic cell system (Buenrostro2018), and 
mononuclear peripheral blood cells prepared using 
two distinct technologies (10X PBMCs v1 and 10X 
PBMCs Next Gem). The evaluation was divided into 
two distinctive stages: 

• Intra-dataset (within-data) experiments: A 
five-fold cross-validation approach was 

employed on each dataset to measure the 
classification efficacy of each algorithm 
within its respective data setting. 

• Inter-dataset (cross-data) experiments: The 
predictive ability of the algorithms was 
scrutinized by training models on one dataset 
(10X PBMCs v1) and subsequently applying 
them to predict cell types in a different dataset 
(10X PBMCs Next Gem), thereby simulating 
a more pragmatic scenario of deploying a 
trained model on an unannotated, novel 
dataset. 

In addition, our evaluation framework was 
expanded to incorporate Extremely Randomized 
Trees (ERT) [37], facilitating comparative analysis of 
its classification accuracy relative to pre-existing 
methodologies within intra-dataset and inter-dataset 
contexts. Analogous to Random Forests, ERT 
constructs an ensemble of decision trees during the 
training phase. However, ERT distinguishes itself by 
employing random splits at each node and utilizing 
diverse subsets of features for each split, thereby 
enhancing robustness and potentially augmenting 
classification accuracy. Although bootstrapping (re-
sampling with replacement) is not a default 
characteristic of ERT, certain implementations do 
accommodate this option. By integrating intra-dataset 
and inter-dataset evaluations across a spectrum of 
algorithms and datasets, this research offers a 
thorough appraisal of machine learning techniques 
for the automatic classification of cell types in 
scATAC-seq data. The crucial advantages that 
motivated the selection of ERT better classification 
are attributable to randomized node splitting. 

Another recent method used for evaluation in this 
study is Multi Layered Perceptron (MLP). The MLP 
is one of the most commonly used architectures 
neural network. MLP neural network structure 
consists of an input layer, hidden layers, and an 
output layer. Each layer consists of a set of perceptron 
neurons. 

 Furthermore, we employed performance metrics 
such as the F1 score and accuracy to assess the 
efficacy of the various methods quantitatively. The 
equations for these metrics are delineated in Equ (1) 
to (4): 

Precision = 
True Positive

True Positive + False Positive
 (1) 

Recall = 
True Positive

True Positive + False Negative
 (2) 

F1 Score = 
2 × Precision × Recall

Precision + Recall
 (3) 

Accuracy = 
Correct Predictions

All Predictions
 (4) 
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4. Experimental Results 

The first phase of the data analysis starts with the 
alignment of the raw sequencing data for each cell, 
initially in fastq format, subsequently converting and 
preserving the output as a bam file. Thereafter, each 
bam file undergoes a sorting process, followed by the 
elimination of duplicate reads specific to each cell. 
Post aggregation, the files are converted to SAM file, 
from which cell-bin matrices are constructed. This 
construction process involves the definition of fixed-
size genomic windows, and the subsequent 
employment of the peak file in conjunction with the 
BAM file to populate a cell-window matrix, 
formatted within the dgCMatrix structure.This is a 
sparse matrix format to store the count value of each 
peak for all cells. The evaluation of these predictions, 
compared against the ground truth cell types, is 
conducted through a spectrum of metrics, including 
the F1 score, confusion matrix, and accuracy, as 
visually represented in Figure 1. 

The count matrices and corresponding ground 
truth annotations for the 10 × PBMCs Next Gem and 
10 × PBMCs v1 datasets were procured from the 
publicly accessible repository maintained by 10x 
Genomics. Supplementary datasets were sourced 
from the National Center for Biotechnology 
Information (NCBI) repository, specifically from the 
Gene Expression Omnibus (GSE74310). Each 
dataset encapsulates the expression profiles of genes 
(features) across individual cellular entities 
(observations). 

These data are organized within a compressed, 
sparse, columnar numerical matrix structure, wherein 
each column is indicative of a specific gene and each 
row corresponds to an individual cell. The matrices 
are preserved in the RDS file format, facilitating 
efficient data manipulation and storage. 

This investigation employed four  publicly 
accessible datasets for evaluation, specifically: 
Corces2016, which pertains to human immune cells; 
Buenrostro2018, associated with human hepatic 
cells; and the 10x PBMCs v1 alongside the Next Gem 
datasets, both of which concern peripheral blood 
mononuclear cells. These datasets exhibit variability 
in terms of tissue origin, the number of samples 
ranging from 575 to 4585 cells, and the sequencing 
methodologies utilized, namely Illumina and 10x 
Chromium platforms. Detailed information regarding 
data accessibility is encapsulated in Table 1. 

In the preliminary phase of within-dataset 
evaluation, a 5 fold cross-validation methodology 
was implemented across all four datasets, employing 
seven distinct machine learning classification 
algorithms. Following this, a comparative inter-
dataset assessment was executed exclusively on the 
10x PBMCs datasets, selected for their uniformity in 

cell type and experimental protocol. Cell type 
annotations were assigned utilizing Seurat v3, which 
was selected for its demonstrated proficiency in 
annotating single-cell ATAC-seq data by leveraging 
corresponding single-cell RNA-seq data and their 
annotations (refer to Table 1). 

Among the seven methodologies evaluated, 
Support Vector Machines (SVM) consistently 
demonstrated superior performance relative to the 
other techniques across all datasets. On the other 
hand, the K-Nearest Neighbors (KNN) algorithm 
exhibited the least effective performance, irrespective 
of whether 9 or 50 nearest neighbors were utilized. It 
is noteworthy that our proposed method, Extreme 
Randomized Trees (ERT), exhibited performance 
metrics comparable to those of SVM, while 
significantly reducing both training and testing 
computation time, in some instances by as much as 
259%.  

For instance, during the second phase of our 
experimental protocol, which entailed the 
comparative analysis of the 10× PBMCs Next Gem 
and 10× PBMCs v1 datasets, the median F1 score 
across the seven cell types within these datasets was 
approximately 0.786 for SVM and 0.729 for ERT. 
Importantly, SVM accomplished cell identification in 
36 Sec, whereas ERT achieved this in 9 Sec. 
Additionally, an examination of the accuracy metrics 
for these two methods within the same experimental 
context revealed that SVM attained an accuracy of 
0.866, compared to 0.831 for ERT, indicating a 
marginal accuracy differential of 0.03. 

In examining the performance metrics of the 
SVM and ERT methods on a singular dataset, 
specifically the 10 × PBMCs v1, we observe that the 
median F1 score for the SVM approach is 
approximately 0.892, whereas the ERT approach 
yields a median F1 score of 0.806, indicating a 
disparity of 0.086. Additionally, the accuracy 
percentages for the SVM and ERT methods stand at 
90.5% and 86.5%, respectively, delineating a 4% 
differential. When considering training times, the 
SVM method processes each data segment in 
approximately 26 Sec while the ERT method 
completes classification tasks in 6 Sec.  

The results are compared with the MLP neural 
networks and the proposed ERT achives better results 
compared to MLP. It can be deducted that the MLP 
neural network is not compatible with this type of 
data and predicts less accurately. This is due to the 
fact that the amount of data in this field is usually low 
due to the high cost of sampling, production and 
labeling. Therefore, the amount of data required for 
training neural networks with high accuracy is very 
hard to collect. 
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Figure. 1. The initial step involves aligning the raw sequencing reads to the reference genome utilizing the BWA software, resulting 
in the generation of a BAM file that contains the aligned reads. Subsequently, this BAM file undergoes sorting and deduplication 

processes to eliminate redundant reads, thereby enhancing the efficiency of subsequent analyses. 2) Following alignment, the BAM 

files from all samples are amalgamated into a single, sorted BAM file to streamline downstream analytical procedures. A list of fixed-
size genomic windows, each centered on a transcription start site (TSS), is then generated. The construction of the cell-by-bin matrix 

ensues, achieved by enumerating the reads from each sample that fall within each predefined window. This matrix is subsequently 

stored in the dgCMatrix class. 3) The ensuing phase involves predictive tasks conducted through two distinct scenarios: A) Assessing 
the performance of various methods in inter-dataset experiments, which entail comparing the predictive capabilities of each method 

between 10X PBMCs v1 and 10X PBMCs Next Gem datasets. B) Conducting intra-dataset experiments through five-fold cross-

validation within each dataset. 4) The efficacy of all seven methods will be evaluated by employing metrics such as the F1 score and 

the confusion matrix. 

Table 1. This table summarizes the scATAC-seq dataset used to evaluate seven machine learning methods for cell type identification. 

The dataset includes approximately eleven thousand cells from up to ten different cell types, sequenced with three different 

technologies. Most of the cells are blood cells. 

Dataset 
Number of 

cells 

Number of 

populations 
Description Protocol Ref. 

Corces2016 575 4 Human immune cell Illumina NextSeq 500 [32] 

Buenrostro2018 2034 10 
Human hematopoietic 

system cell 
Illumina NextSeq 500 [33] 

10X PBMCs v1 
3917(2927 

labeled) 
7 

Peripheral blood 
mononuclear cell 

10X Chromium Next GEM Single 
Cell ATAC Reagent Kits v1.1 

[34] 

10X PBMCs Next 
Gem 

4585 (3670 

labeled) 
7 

Peripheral blood 

mononuclear cell 

10X Chromium Single Cell ATAC 
Reagent Kits 

[35] 
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It is important to underscore that the objective of 
presenting these examples from the initial and 
subsequent stages of the experiment is to scrutinize 
the efficacy of these two methodologies when 
confronted with substantial data volumes, thereby 
subjecting their performance to rigorous evaluation. 
(Refer to Table 2 for detailed metrics). 

In another scenario designed to test the 
classification robustness, we reduced the amount of 
input data for training data to three levels. In this 
experiment, the data was considered as training data 
at 90%, 80%, and 70% levels to measure the impact 
of data scarcity on different methods. This 
experiment was conducted to compare our proposed 
method, ERT, with the SVM method, which had the 
best performance when using all the data. The details 
are shown in Table 2. In summary, our proposed 
method showed better resistance to data reduction in 
classifying blood cells, maintaining its normal speed 
and accuracy. In contrast, the SVM method 
demonstrated its robustness in other cell data. 

It is noteworthy that several methodologies 
employed in this study, specifically NMC, RF, and 
ERT, demonstrated performance metrics—namely, 
accuracy and F1 score—comparable to those 
achieved by SVM. In certain instances, these methods 
even surpassed the performance of SVM. 
Conversely, the methodologies DT, LDA, and KNN 
exhibited inferior performance. These experimental 
evaluations were conducted on the Google 
Collaboratory Pro platform with 355 GB of RAM and 
on the Google processor units. 

5. Experimental Setup 

The initial phase of our methodology 
encompasses preprocessing single-cell data and 
establishing a cross-validation framework tailored for 
machine learning analysis, executed through R 
scripting. The preliminary operations entail the 
ingestion of datasets, wherein cell population labels 
are sourced from a CSV file, and pre-processed 
single-cell data is retrieved from an R data file. To 
maintain data integrity, the script meticulously filters 
both datasets, ensuring the inclusion of only those 
cells that are present in both datasets. Subsequently, 
the script delineates a function designated as “Cross 
Validation”. This function is pivotal in configuring a 
framework that partitions the data into training and 
testing subsets for the purpose of cross-validation.  

It permits the user to designate the specific 
column within the label data that delineates the cell 
population classification level for subsequent 
analysis. Moreover, the function excludes cell 
populations comprising fewer than 10 cells, thereby 
omitting statistically insignificant groups from the 
analysis. 

The principal operation of the function is 
predicated on the implementation of stratified K-Fold 
cross-validation. This method delineates five distinct 
folds, meticulously ensuring that each fold preserves 
an equivalent distribution of cell types as observed in 
the entire dataset. The function systematically iterates 
through each fold, generating discrete lists that 
encompass indices for both training and testing 
datasets, which are subsequently utilized in machine 
learning models. Ultimately, the cross-validation 
configuration specifics are archived in an R data file, 
intended for utilization in the classification phase. 
During the classification phase, requisite libraries for 
data manipulation, machine learning, and interfacing 
with R are imported. Additionally, a function is 
delineated to facilitate the conversion of sparse 
matrices from R format to Python format, thereby 
ensuring compatibility. 

The described function is a sophisticated tool 
designed to facilitate a machine learning 
classification task on single-cell data. It requires paths 
to data files, label files, cross-validation configuration 
files, and an output directory. The function initiates 
by extracting cross-validation settings and 
subsequently reads and filters the data and labels 
according to configurations generated by R. 
Following this, the data undergoes normalization via 
a logarithmic transformation. 

The machine learning model employed is the 
Extreme Randomized Trees (ERT) algorithm, an 
ensemble method that aggregates multiple decision 
trees. The learning process of these trees is modulated 
through specific hyper parameters, detailed in Table 
3. This Python-based code serves as a wrapper, 
orchestrating the classification task by leveraging 
predefined configurations and systematically saving 
the results for subsequent analysis. 

In the final stage, an R script is utilized to evaluate 
the performance of the machine learning classifier on 
the single-cell data. This script ingests true labels 
(ground truth) and predicted labels from separate 
CSV files. It also has the capability to focus on 
specific data subsets through provided indices. The 
core component, the “evaluate” function, processes 
the data to construct a confusion matrix, which 
clarifies the frequency of correct class predictions. 
Furthermore, it computes various performance 
metrics, manages unclassified predictions, and 
determines F1 scores for each class alongside overall 
accuracy. 

Additionally, the script calculates the proportion 
of unlabeled cells and assesses the population size for 
each class. The results of this evaluation are 
meticulously organized and saved in distinct 
directories for confusion matrices, F1 scores, 
population sizes, and summary statistics. Each 
directory contains CSV files, ensuring that the 
evaluation data is readily accessible for further in-
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depth analysis of the classifier's performance. Finally, 
some performance details of the three chosen 
methods (SVM, ERT, MLP) in all four datasets are 
gathered in Figure 2 to Figure 5. This platform will 
aim to facilitate the real-time analysis of a vast array 
of patient-related information from a single sampling 

event, serving both clinical and research purposes. 
Additionally, it is recommended that researchers 
engaged in chip development prioritize the creation 
of chips capable of receiving data from non-invasive 
samples (e.g., saliva), thereby advancing the 
development of these MIoT edge devices. 

Table 2. The comparison between our suggested method and best performing method on inter and intra datasets. 

Predicting 

Method 
Dataset Type Dataset Name Median F1 Score Accuracy 

Training Time 

(Per Fold) 

SVM 

Inter-dataset 
10X PBMCs Next Gem and 10X 

PBMCs v1 
0.786 0.866 36s 

Intra-dataset 10X PBMCs v1 0.892 0.905 26s 

ERT 
Inter-dataset 

10X PBMCs Next Gem and 10X 

PBMCs v1 
0.729 0.831 9s 

Intra-dataset 10X PBMCs v1 0.806 0.865 ~6s 

Table 3. Used hyperparameters with their description and applied values for “ert” 

Hyperparameter Value Description 

n_estimators 10 

This specifies the number of decision trees to be included in the ensemble. Increasing this value 

generally leads to a more complex model and potentially better performance, but also increases 

training time. 

max_depth None 
This parameter controls the maximum depth of each individual decision tree. A deeper tree can 
potentially learn more complex patterns in the data, but also risks overfitting. Setting it to None 

allows the trees to grow freely until they reach a stopping criterion. 

min_samples_split 2 
This hyperparameter determines the minimum number of samples required to split a node in the 
decision tree. Higher values can prevent overfitting by avoiding splitting nodes with very few data 

points 

random_state 0 
This sets a random seed for the algorithm, ensuring reproducibility of the results when the code is 

run multiple times. 
 

 

 

 
 

 

 
Figure. 2. Experimental results for Intra-10xPBMCsNextGem 

  
Figure. 3. Experimental results for Intra-10xPBMCsV1 
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Figure. 5. Experimental results for Intra-Corces2016 
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