Quarterly Journal of Environmental Education and Sustainable Development Vol. 7, No. 4, Summer 2019 (115-124)

فصلنامه علمی، آموزش محیطزیست و توسعه یایدار

سال هفتم، شماره چهارم، تابستان ۱۳۹۸ (۱۲۴–۱۱۵)

Relationship between Air Pollutants and Mortality from Cardiorespiratory Diseases in Mashhad: A Step Towards Increasing Citizens' Awareness of **Adverse Effects of Pollutants**

^{*}Ali Akbar Maleki Rad¹, Fahimeh Tanja², Gholamhassan Vaezi³

1. Assistant Professor, Department of Psychology, Payame Noor University, Tehran, Iran 2. M.A. in Physiology, Islamic Azad University, Damghan, Iran 3. Professor of Physiology, Department of Biology, Islamic Azad University, Tehran, Iran (Received: 13/10/2018 Accepted: 26/1/2019)

ارتباط آلایندههای هوای شهر مشهد با مرگومیر ناشی از بیماریهای قلبی و عروقی و تنفسی، گامی در راستای شناخت و آگاهی شهروندان از اثرات منفی آلایندهها

*على اكبر ملكي راد'، فهيمه تنجاه'، غلامحسن واعظى"

 استادیار گروه روانشناسی، دانشگاه پیام نور، تهران، ایران ۲. کارشناس ارشد فیزیولوژی، دانشگاه آزاد اسلامی واحد دامغان، دامغان، ابر ان ۳. استاد گروه زیستشناسی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران (دريافت: ١٣٩٧/٧/٢١ يذيرش: ١٣٩٧/١١/۶)

Abstract:

Air pollution in different cities of the world is a complex mixture of toxic components, including particulate matter (PM), mainly produced by combustion processes. A cross-sectional analytical study was conducted to investigate the relationship between air pollutants and mortality from cardiorespiratory diseases in Mashhad. To this end, the data on mortality from cardiorespiratory diseases in 2012-2013 were obtained from Razavi Khorasan Health Organization. The mean daily concentration of air pollutants, including carbon monoxide (CO), PM with a diameter of 10 micrometers or less (PM_{10}), and $PM_{2.5}$ was calculated. The results of data analysis showed that there was a relationship between PM_{10} concentration and the rate of mortality from cardiovascular diseases in men. In addition, a significant relationship was observed between PM₁₀ concentration and the rate of mortality from respiratory diseases in both men and women. The results indicated that there was a significant relationship between PM_{2.5} concentration and the rate of mortality from cardiorespiratory diseases in both men and women. There was also a significant relationship between CO concentration and the rate of mortality from respiratory diseases in women. The results demonstrated that PM_{2.5} has the greatest effect on mortality from cardiorespiratory diseases. The study findings were reported within the context of environmental communication by using the media tools to raise public awareness of the adverse effects of pollutants.

Keywords: Air Pollution, Cardiorespiratory Diseases, Mortality, Awareness.

چکىدە:

آلودگی هوا در شهرهای جهان، مخلوط پیچیدهای از اجزای سمی است کـه عمدتاً محصول فرآیندهای احتراق است و ذرات معلق (PM) عضو همیشه حاضر این مخلوط هستند. مطالعه حاضر به بررسی ارتباط آلاینده های هوا با میزان مرگومیر ناشی از بیماریهای قلبی عروقی و تنفسی در مشهد می پردازد. طی یک مطالعه مقطعی تحلیلی میزان مرگومیر بر اثر بیماری قلبی و عروقی از سازمان بهداشت استان خراسان در بازه زمانی (۱۳۹۱– ۱۳۹۲) دریافت گردید. سیس میانگین روزانه آلودگی هوا شامل مونوکسید کربز، co، مواد معلق با قطر کمتر از ۱۰ میکرون PM₁₀، مواد معلق با قطر کمتر از PM_{2.5} ۲/۵ اخذ گردید. نتایج مورد تجزیهوتحلیل آماری قرار گرفت. ذرات معلق، PM₁₀ دارای ارتباط معنی داری با میزان مرگومیر ناشی از بیماریهای قلبی و عروقی در مردان است. همچنین ایـن ذرات دارای ارتباط معنی داری با میزان مرگومیر ناشی از بیماری های تنفسی در مردان و زنان بود. علاوه بر این ارتباط معنی داری بین میزان ذرات معلق PM2.5 و میزان مرگومیر ناشی از بیماریهای قلبی و عروقی و میـزان مـرگومیـر ناشی از بیماریهای تنفسی در مردان و زنان مشاهده شد. همچنـین ارتبـاط معنی داری بین ذرات CO و میزان مرگومیر ناشی از بیماری های تنفسی در زنان مشاهده شد. ذرات معلق PM_{2.5} داری بیشترین تأثیر در مرگومیـر توسط بیماریهای قلبی و عروقی و تنفسی میباشند. نتایج این پـ ژوهش در چارچوب ارتباطات محیطزیستی و استفاده از ابزار رسانه برای ارتقای آگاهی و شناخت عمومی از اثرات آلایندهها، گزارش شده است..

واژههای کلیدی: آلودگی هوا، بیماری قلبی و عروقی، بیماری تنفسی، مرگومیر، شناخت و آگاهی.

Introduction

The number of studies on the health effects of air pollution has significantly increased over the past 15-10 years. It is now well established that exposure to air pollution is associated with a wide range of acute and health problems from chronic minor physiological disorders to mortality from cardiorespiratory diseases (Pope III, 2006; Bascom, 1996). Air pollution in different cities of the world is a complex mixture of toxic components, including particulate matter (PM), mainly produced by combustion processes (Cohen, 2005). PM is a mixture of liquid and solid particles with different sizes and chemical compositions. Fuel combustion of mobile sources (such as cars, trucks, and buses) and stationary sources (such as power plants and boilers) is the main source of PM in large cities. However, dusty roads, biomass burning, manufacturing processes, and primary pollutants from diesel engines are also involved in PM production (Ostro, 2004). Many PM-related health effects have been reported, such as mortality, lung cancer, cardiorespiratory hospitalization due to diseases, visiting the emergency units or doctor's office, deterioration of respiratory symptoms, absenteeism, restricted daily activities, and acute and chronic bronchitis (WHO, 2003). Many studies around the world have shown the relationship between nonaccidental daily mortality and PM (Zmirou, 1998; Goldberg, 2001). Epidemiological studies in Europe and around the world over the past decade have indicated that one-day and the several-day mean of PM are associated with total mortality and mortality from cardiorespiratory diseases (Schwartz, 1999; Dominici, 2002). PM₁₀, PM_{2.5}, black fume, and sulfates seem to have the highest association with mortality and prevalence of diseases (Ostro, 2004). Group studies have demonstrated that long-term exposure to PM results in a substantial reduction in life

expectancy, mainly due to mortality from cardiorespiratory diseases (Anderson, 2004). It is believed that $PM_{2.5}$ is a more serious threat than PM₁₀ to human health because smaller particles are more likely to accumulate on deeper layers of lungs. Moreover, studies have shown that small particles are able to penetrate into the deepest layers of the body (Ostro, 2004). PM_{2.5} seriously threats human health and increases the rate of mortality from cardiorespiratory diseases and lung cancer (Anderson, 2004; Ostro, 2004).

World Health Organization (WHO) estimates show that about 800,000 premature deaths caused by air pollution occur annually around the world (Goldberg, 2001). WHO's an estimation of the global burden of diseases (GBD) caused by air pollution indicates that 89% of all deaths attributed to air pollution were caused by cardiorespiratory diseases (Cohen, 2004). According to death data of Behesht-e Zahra Organization (2007), about 43% of all non-accidental deaths in 2006 were caused by cardiorespiratory diseases. The data published by this organization also demonstrate that more than 90% of deaths caused by cardiorespiratory diseases in Tehran were related to individuals aged over 30 years (Behesht-e Zahra Organization, 2007).

Epidemiological studies have shown that the 24-hour high mean of air pollution is associated with an increased rate of mortality from cardiorespiratory diseases and all other causes of death (Bascom, 1996; Schwartz, 1991). However, little information is available on the effects of short-term exposure to air pollution. Many studies have reported that adverse effects of increased concentration of PM. CO. and other pollutants include increased admission to hospital and emergency units for respiratory diseases. In addition, numerous studies conducted in the US, Canada, and Europe have shown that

increased concentration of PM and CO leads to an increase in hospital admission for cardiovascular diseases. These findings indicate that air pollution is a risk factor for both respiratory diseases and acute coronary events, including acute coronary syndrome (ACS) and myocardial infarction (MI) (Jaakkola, 2001).

Polluted air inhalation can aggravate acute heart attacks through lung inflammation and increasing coagulability due to protein C deficiency (Schwartz, 1995). The increased concentration of reactive plasma protein has been observed in healthy individuals after a period of exposure to polluted air (Peters et al., 2001). Increased heart rate and increased risk of disruption of the implantable cardioverter-defibrillator (ICD) indicate the automatic response of the nervous system to exposure to air pollutants, especially CO (Routledge and Ayres, 2005). Peters et al. showed that the risk of MI is associated with the high PM_{2.5} concentration within one to three hours just before MI in hospital (Peters et al., 2001).

In another study, Joneidy et al. (2006) investigated the relationship between the number of deaths caused by cardiorespiratory diseases attributed to Tehran air pollution and PM concentration. In this study, PM_{2.5} concentration, as an indicator of air pollution, was equal to 11.34 μ g/m³ in 2006, which was calculated using the PM₁₀-PM_{2.5} ratio (0.5) and the mean daily concentration of PM_{10} . Their estimates demonstrated that the number of deaths attributable to PM contamination was equal to 5388 cases (CI 95%: 7505-2360), accounting for 39.90% of all deaths caused by cardiorespiratory diseases among individuals aged over 30 years in Tehran in 2006. Their findings suggested a weak but significant correlation between PM concentration and the rate of mortality from cardiorespiratory diseases (Joneidy et al., 2009).

Malekafzali (2001) reported that there was a significant relationship between the concentration of SO2, CO, and PM₁₀ and mortality rate. Ghorbani et al. (2007) studied the relationship between exposure to air pollution and the onset of ACS attacks in 250 patients admitted to hospitals of Tehran and reported a significant positive relationship between the occurrence of ACS and the 24hour mean of CO (CI 95%: 1.34-1.03, OR:18.1) per unit increase in CO. However, the relationship between ACS and the 24-hour mean of PM₁₀ (CI 95%: 1.01-0.99, OR: 1.005) was not statistically significant. There was also a significant difference between men and women in terms of the relationship between the 24-hour mean of CO and ACS, as women were more sensitive than men (CI 95%: 2.26-1.25, OR: 1.75). However, the relationship between ACS and the 24-hour mean of PM₁₀ did not change by effect-moderating variables. Their findings showed that the increased 24hour mean of CO increases the risk of ACS, which is greater in women. The results showed no significant relationship between ACS and the 24-hour mean of PM₁₀ (Ghorbani et al., 2007).

Farajzadeh (2008) showed that most of the deaths occur during the cold months of the year. Gholizadeh (2009) also reported that there is a high correlation between air pollution and mortality rate in the fall. Shireepour (2009) showed that the maximum SO_2 level occurs in the winter, while the maximum O_3 level occurs during spring and summer.

In a study conducted by Azhdarpour *et al.* (2011) in Shiraz, Iran, it was shown that there is a significant relationship between car accidents and air pollutants, such as CO, SO₂, NO, NO₂, O₃, and PM (p<0.05). The results on CO indicate that the number of accidents increases by 1.1 times per unit increase in CO. They also found a significant relationship between respiratory diseases and NO level,

although such a significant relationship was not observed between respiratory diseases and other pollutants. In addition, there was a relationship significant between cardiovascular diseases and the concentration of NO₂ and SO₂. It can be generally concluded that the number of accidents substantially with in increases the increase the concentration of NO_2 , NO O₃, and (Azhdarpour et al., 2011).

The results reported by Alidadi et al. (2013) for the city of Mashhad in Iran showed that there is a significant relationship between air pollutants and mortality from cardiorespiratory diseases. The Pearson correlation coefficient between cardiovascular diseases in women and concentration of NO₂, SO, CO, and NO was obtained as 0.447, 0.404, 0.397, and 0.323, respectively, with a significance level of 1%. There was a significant relationship between SO_2 concentration and respiratory diseases in men, with a Pearson correlation coefficient of 0.639. Their results also showed that the mortality rate was higher in men than women. The highest correlation between pollutants and mortality was observed in December-January, and there was an increasing trend in the concentration of pollutants over December, January, February, and March. They also reported that there was an increase in the rate of mortality from cardiorespiratory diseases with the increase in the concentration of pollutants during the study period (Alidadi et al., 2013).

In a study conducted by Delangizan and Motlagh in Kermanshah in 2011, it was shown that a 1% increase in haze-borne air pollution increases the rate of hospitalization due to cardiovascular diseases and respiratory diseases by about 5% and 1%, respectively, and the rate of mortality from cardiovascular diseases by about 3%. The relationship between haze and mortality from respiratory diseases was positive but statistically insignificant. Their results indicated that the rate of hospitalization due to cardiorespiratory diseases is highly sensitive to haze concentration. This sensitivity increased from 2010 to 2011 and was greater for men than women. During the second and third quarters of 2011, there was at least a 29% increase in mortality from cardiovascular diseases for every 100% increase in haze concentration (Delangizan and Motlagh, 2013).

Levy et al. (2001) found no significant relationship between $PM_{2.5}$ concentration and cardiac arrest outside the hospital. Yang *et al.* (2014) reported that SO₂ and CO have the greatest impact on mortality from respiratory diseases.

In a study conducted by Amiri in 2011 in Karaj, it was shown that the 8-hour mean O_3 concentration and the mean annual PM₁₀ concentration were about 17 and 3.9 times, respectively, above the Iranian national standard and WHO guidelines. Total mortality caused by PM₁₀ and O₃ in Karaj during the study period was estimated as 282 and 164, respectively, accounting for about 3.9% and 1.53% of all deaths in Karaj (except for deaths from road accidents). The mean cases attributed to O3 for chronic obstructive pulmonary disease (COPD) was 58, and the mean cases attributed to PM_{10} for hospitalization due to cardiovascular diseases was obtained as 492. The findings indicate that air pollution in Karaj accounted for the lion's share of mortality and hospitalization cases from January 2012 to January 2013. Therefore, relevant authorities should use appropriate, sustainable, and applicable solutions based on comprehensive scientific research to control the air pollution crisis in Karaj (Amiri, 2013).

Some studies have shown that the rate of mortality from lung cancer and cardiovascular diseases caused by air pollution is high among Chinese, Koreans, and Iranians (Chen, 2017; Khaniabadi, 2017; Badyda, 2016). Another study indicates that there is a relationship between long-term exposure to $PM_{2.5}$ and increased rate of mortality from cardiovascular diseases and increased rate of hospitalization due to respiratory conditions (Kollanus, 2016).

There is also a relationship between shortterm exposure to $PM_{2.5}$ and the increased rate of mortality from cardiovascular diseases (Chen, 2017). The findings of Miri (2016) showed that $PM_{2.5}$ concentration is more effective than O₃, NO₂, SO₂, and PM₁₀ in increasing the mortality rate.

Some studies have demonstrated that acute effects of pollutants vary in different seasons and geographical conditions (Miri, 2016). However, another study suggested the need for further longitudinal studies to prove the relationship between mortality from cardiovascular diseases and the concentration of pollutants (Kim, 2017).

Nowadays, various pollutants are released into the air through motor vehicles, industries, and commercial and domestic sources in Tehran and many industrialized and large cities around the world, especially in developing countries (Mo, 1997).

Although technological development has brought various achievements to human life, technological tools sometimes produce and discharge unwanted and often harmful waste into the environment. Given the threat of pollution to human health, it is necessary to increase society's knowledge and awareness of different aspects of this issue in order to prevent or reduce environmental hazards of air pollution. Hence, the present study aims to investigate the relationship between air pollutants and mortality from cardiorespiratory diseases in Mashhad.

Methodology

A descriptive-analytical study was conducted on all people of Mashhad as the statistical population. The data on mortality from cardiorespiratory diseases in 2012-2013 were obtained from Razavi Khorasan Health Organization. In addition, the mean daily concentration of air pollutants, including CO, SO₂, O₃, PM₁₀, and PM_{2.5}, were received from Razavi Khorasan Department of Environment and Mashhad Air Quality Control Company.

The annual concentration of air pollutants was obtained from different measurement stations. The number of deaths from cardiorespiratory diseases for each month of the year was then obtained from Mashhad Emergency Center in order to find the relationship between environmental pollutants and the rate of mortality from cardiorespiratory diseases. Descriptive and inferential statistical methods were employed to study the effects of air pollutants on the rate of mortality from cardiorespiratory diseases, and the results were extracted using Kendall's Tau rank correlation coefficient.

Findings

In a descriptive-analytical study, the rate of mortality from cardiorespiratory diseases and the mean daily concentration of air pollutants, including CO, SO₂, O₃, PM₁₀, and PM_{2.5}, in 2012-2013 were investigated.

The mean values of variables and their descriptive indices (mean and standard deviation) are shown in Table 1. As shown in this table, the mean number of deaths from respiratory diseases was more than that of cardiovascular diseases. In addition, the mean number of deaths among men was relatively more than that of women.

Based on the results shown in Table 2, there is a positive and significant relationship between PM_{10} concentration and the rate of mortality from cardiovascular diseases among men in Mashhad. However, no significant relationship was observed between PM_{10} concentration and the rate of mortality from cardiovascular diseases among women in this city.

Variable	Mean	Standard deviation
PM _{2.5}	78.71	15.80
PM10	47.15	14.01
СО	3.67	0.58
Male mortality from respiratory diseases	39	5.91
Female mortality from respiratory diseases	38	3.37
Male mortality from cardiovascular diseases	16	2.88
Female mortality from cardiovascular diseases	15	2.54

Table 1. Descriptive indices of research variables

Table 2. The relationship between theconcentration of PM_{10} , $PM_{2.5}$, and CO and the rateof mortality from cardiovascular diseases in menand women (Kendall's Tau rank correlationacefficient)

Variable		Kendall's	Significa nce level	Samp
		Tau rank		le
		correlation		size
PM ₁₀	Male	0.259	0.024	12
	Female	0.050	0.660	12
PM _{2.5}	Male	0.240	0.037	12
	Female	0.281	0.013	12
СО	Male	0.155	0.177	12
	Female	0.017	0.883	12

Table 3. The relationship between the concentration of PM_{10} , $PM_{2.5}$, and CO and the rate of mortality from respiratory diseases in men and women (Kendall's Tau rank correlation coefficient)

Va	riable	Kendall's Tau rank correlation	Significance level	Sample size
PM ₁₀	Male	0.682	0.001	12
	Female	0.860	0.001	12
PM _{2.5}	Male	0.467	0.001	12
	Female	0.414	0.001	12
СО	Male	0.167	0.141	12
	Female	0.276	0.017	12

Table 2 shows that there was a significant and positive relationship between $PM_{2.5}$ concentration and the rate of mortality from cardiovascular diseases among both men and women in Mashhad. In other words, it can be stated that the higher the $PM_{2.5}$ concentration, the higher the rate of mortality from cardiovascular diseases in men and women.

The results also indicated that there was no

significant relationship between CO concentration and the rate of mortality from cardiovascular diseases among men and women in Mashhad.

The results presented in Table 3 show that there was a positive and significant relationship between PM_{10} concentration and the rate of mortality from respiratory diseases among men and women in Mashhad. In fact, the higher the PM_{10} concentration, the higher the rate of mortality from respiratory diseases among both men and women.

The results also demonstrated that there was a positive and significant relationship between $PM_{2.5}$ concentration and the rate of mortality from respiratory diseases among men and women in Mashhad. It can be thus concluded that the higher the $PM_{2.5}$ concentration, the higher the rate of mortality from respiratory diseases among both men and women in this city.

Table 3 shows that there was no significant relationship between CO concentration and the rate of mortality from respiratory diseases among men in Mashhad, whereas a positive and significant relationship was found between CO concentration and the rate of mortality from respiratory diseases among women in this city. In fact, the higher the CO concentration, the higher the rate of mortality from respiratory diseases among women.

Discussion and conclusion

The study findings showed that there was a relationship between significant PM_{10} concentration and the rate of mortality from cardiovascular diseases among men, but not women, in Mashhad. In addition, there was a relationship significant between PM_{10} concentration and the rate of mortality from respiratory diseases among both men and women of Mashhad. The results also indicated that there was a significant relationship between PM_{2.5} concentration and the rate of mortality from cardiorespiratory diseases

among both men and women of Mashhad. In this study, no significant relationship was observed between CO concentration and the rate of mortality from cardiovascular diseases among men and women. The results also demonstrated that there was a significant relationship between CO concentration and the rate of mortality from respiratory diseases among women, whereas such a significant relationship was not found between CO concentration and the rate of mortality from respiratory diseases among men.

The study findings suggested that the most important air pollutants in Mashhad are PM_{2.5}, PM_{10} , and CO, in the order of significance. It was also observed that men are more sensitive than women to PM₁₀ in terms of affliction with cardiovascular disease, and women are more sensitive than men to CO in respiratory diseases. The results demonstrated that the risk of affliction with cardiovascular diseases was higher than that of respiratory diseases at high concentrations of PM_{2.5} and PM₁₀. These results are consistent with the findings of Peters al. (2011) concerning the et relationship between the risk of myocardial infarction and PM2.5 concentration and Joneidy et al. (2006) about the significant correlation between PM2.5 concentration and the rate of mortality from cardiorespiratory diseases. The results of this study are also consistent with the findings of Malekafzali (2001) about the relationship between PM_{10} concentration and mortality rate, as well as those reported by Alidadi (2013) in terms of the significant relationship between the concentration of pollutants and affliction with cardiorespiratory diseases. In this study, there was a significant relationship between PM_{2.5} concentration and mortality from cardiovascular diseases. This is not consistent with the results of Levy et al. (2001) who observed no significant relationship between PM_{2.5} concentration and cardiac arrest outside the hospital. No significant relationship was

observed between CO concentration and the rate of mortality from cardiorespiratory diseases in this study, which is not consistent with the findings of Ghorbani et al. (2007). In this study, there was a significant relationship between the concentration of $PM_{2.5}$ and PM_{10} mortality and the rate of from the cardiorespiratory diseases. However, relationship between PM₁₀ concentration and the rate of mortality from cardiovascular diseases was not statistically significant among women, which indicates the greater risk of PM₁₀ for men. The higher sensitivity of women to CO can be considered the reason for the greater susceptibility of women's respiratory and pulmonary tract to smoke and pollutants.

The study findings concerning the significance of CO is not consistent with the results of Yang et al. (2004). The present study suggested that CO have the least effect on mortality from cardiorespiratory diseases. This difference can be attributed to climatic and racial changes or the sample size. Many biological effects indicate that elevated levels of CO lead to cardiac events. First, inhalation of CO particles causes the activation of cytokines by alveolar macrophages and epithelial cells and the utilization of inflammatory cells. In addition, increased concertation of plasma C-reactive protein in exposure to CO has been observed in previous studies.

The results of this study about the insignificant relationship between haze concentration and the rate of mortality from respiratory diseases are not consistent with the findings of Delangizan (2011). This difference can be attributed to climatic and racial changes or the sample size. The differences between the results of studies conducted in different cities and countries can be attributed confounding factors to the such as geographical location, temperature, humidity, air pressure, smoking, job, seasonal changes, socioeconomic stresses, duration of exposure

to the outside environment, and cultural issues such as low frequency of visiting a physician,

REFERENCES

- Alidadi, H., Hadi Luo, T., Pazira, M., Pezeshk, Y.A., and Rahimi, M. (2013). A survey on the relationship between air pollution and death and death from respiratory and cardiovascular diseases in Mashhad during 2007-2011. The 16th National Conference on Environmental Health in Iran - October 2013. [In Persian]
- Amiri, H., Noori Sepehr, M., Sadegh Hasanvand M., Mazlomi, S., and Mohammadi Kolhori E. (2013). Evaluation of health effects (deaths and diseases caused by cardiovascular and respiratory diseases) due to PM10 and O3 air pollutants in Karaj. The 16th National Conference on Environmental Health in Iran - October 2013. [In Persian]
- Anderson, H. R., Atkinson, R. W., Peacock, J.
 L., Marston, L. and Konstantinou, K.
 (2004). A meta-analysis of time-series studies and panel studies of particulate matter (PM) and Ozone (O₃). Report of WHO task group. Copenhagen, WHO regional office for Europe.
- Azhdapour Esfandabadi, A., Soleimani A., Khademi, S., Sharafi, Z., and Jalili M. (2011). The Effect of Air Pollution on Cardiovascular, Respiratory, Fatal, and Accidental Diseases in Shiraz, Iran (Study Period, Feb. 13, 2011, to Feb. 30, 2011). The 16th National Conference on Environmental Health in Iran, October 2013. [In Persian]
- Badyda, AJ., Grellier, J., Dąbrowiecki, P. (2017).Ambient PM2.5 Exposure and Mortality Due to Lung Cancer and Cardiopulmonary Diseases in Polish Cities. Adv Exp Med, Biol. 944, 9-17.

especially in chronic diseases, angina pectoris, and COPD

- Bascom, R., Bromberg, PA. (1996). Health effect of outdoor air pollution. *Am J Respir Crit Med*, 153, 3-50.
- Burnett, RT., Brook, J., Dann, T., Delocla C, Philips O, Cakmak S, Vincent R, Goldberg MS, Krewski D.(2000). Association between particulate – and gas-phases components of urban air pollution and daily mortality in eight Canadian cities. Inhal Toxicol. 12Suppl 4, 15-39.
- Chen, L., Shi, M., Gao, S., Li, S., Mao, J., Zhang, H., Sun, Y., Bai, Z., and Wang, Z. (2017). Assessment of population exposure to PM2.5 for mortality in China and its public health benefit based on BenMAP. *Environ Pollut*. Feb; 221:311-317.doi: 10.1016/j.envpol.2016.11.080. Epub 2016 Dec 3.
- Chen, R., Yin, P., Meng, X., Liu, C., Wang, L., Xu, X., Ross, JA., Tse, LA., Zhao, Z., Kan, H. and Zhou, M. (2017). Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities. Am J Respir Crit Care Med. 196(1), 73-81. DOI: 10.1164/rccm.201609-1862OC.
- Cohen, A.J, Anderson, H.R. and Ostro, B. (2004). Mortality impacts of urban air pollution In Ezzati M, Lopez AD, Rodgers A, Murray CJL, eds. Comparative quantification of health risks: the global, regional burden of disease attributable to selected major risk factors. Geneva: World health organization, Vol2.
- Cohen, A.J., Ross Anderson, H., Ostro, B., Pandey, K.D., Krzyzanowski, M., Kunzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J.M. and Smith, K. (2005). The

global burden of disease due to outdoor air pollution. *J Toxicol Environ Health A*. 68 (13-14), 1301-7.

- Delangizan, S. and Jafari Motlagh, Z. (2013). Investigating the effect of refractometer on hospitalization and mortality of cardiovascular and respiratory patients (Case study: Kermanshah city, first six months of 2011-2011). Journal of Health and Environment, Journal of Science and Environmental Research, Health Association of Iran, 6(1), 76-65. [In Persian]
- Dockery, DW. Pope, CA. (1994). 3rd. Acute respiratory effects of particulate air pollution. *Annu Rev Public Health*, 15, 107-32.
- Dominici, F., McDermott, A., Zeger, SL., and Samet, JM. (2002). On the use of generalized additive models in time-series studies of air pollution and health. *Arm J Epidemiol*, 156(3), 193-203.
- Farajzadeh, M. and Darand, M. (2008) Analysis of the effect of air temperature on Tehran's mortality and morbidity. *Journal* of Hakim Research, 11(2), 34-27. [In Persian]
- Gholizadeh, M.H., Farahzadeh, M. and Darand, M. (2009). Relationship between air pollution and population mortality in Tehran, *Journal of Hakim Research*, 12(2), 71-65. [In Persian]
- Ghorbani, M., Younesian, M., Photohi, A., Zeraati, H., Sadeghian, S. and Rashidi, Y. (2007) The relationship between exposure to air pollution and the onset of acute cardiac syndrome attacks in Tehran's Heart Hospital by cross-sectional approach. *Journal of Epidemiology*, 3(2&1), 59-53.
- Goldberg, M.S. (1996). Particulate air pollution and daily mortality: who is at risk? *J Aerosol Med.*, 9(1), 43-53.

- Goldberg, M.S., Burnett, R.T, Bailar, JC 3rd, Brook, J., Bonvalot, Y., Tamblyn, R., Singh, R., Valois, M.F. and Vincent, R. (2001). The association between daily mortality and ambient air particle pollution in Montreal, Quebec. 2. Cause-specific mortality. *Environ Res.* 86(1), 26-36.
- Jaakkola, JJK. Nafsted, P., Magnus, P. (2001). Environmental tobacco smoke, parental autopsy, and childhood asthma. *Environ Health Perspect*, 109, 579-82.
- Jonidi Jafari, A., Zohoor, A., Rezaei, R. and Malek Afzali, SH and Seif, A. (2009). Estimation of the number of heart and respiratory deaths due to air pollution in Tehran, *Medicine and Cultivation*, 17(75-74), 37-47. [In Persian]
- Khaniabadi, YO., Hopke, PK., Goudarzi, G., Daryanoosh, SM., Jourvand, M. and Basiri, H. (2017). Cardiopulmonary mortality and COPD attributed to ambient ozone. *Environ Res.* 2017 Jan; 152:336-341. DOI: 10.1016/j.envres.2016.10.008. Epub 2016 Nov 12.
- Kim, SE., Honda, Y., Hashizume, M., Kan, H., Lim, YH., Lee, H., Kim, CT., Yi, SM., and Kim H. (2017). Seasonal analysis of the short-term effects of air pollution on daily mortality in Northeast Asia. *Sci Total Environ*. 2017 Jan 15; 576:850-857. DOI: 10.1016/j.scitotenv.2016.10.036. Epub 2016 Nov 7.
- Kollanus, V., Tiittanen, P., Niemi, JV., and Lanki, T. (2016). Effects of long-range transported air pollution from vegetation fires on daily mortality and hospital admissions in the Helsinki metropolitan area, Finland. *Environ Res.* 151,351-358. DOI: 10.1016/j.envres.2016.08.003. Epub 2016 Aug 13.
- Levy, D., Sheppard, L., Checkoway, H., Kaufman, J., Lumley, T., Koenig, J.

(2001). A case 0 crossover analysis of particulate matter air pollution and out – of – hospital primary cardiac arrest. *Epidemiology*, 12, 193-9.

- Malek Afzali, H., Halakoee, Naini, K. and Younesian, M. (2001). The Relationship Between Increasing Air Pollution and Death in People Over 64 Years Old in Tehran. *Quarterly Journal of Monitoring*, 1(1), 24-19. [In Persian]
- Miri, M., Derakhshan, Z., Allahabadi, A., Ahmadi, E., Oliveri Conti, G., Ferrante, M. and Aval HE. (2016). Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach. *Environ Res.* 151,451-457. DOI: 10.1016/j.envres.2016.07.039. Epub 2016 Aug 24.
- Mo, EF. (1997). Ministry of environment and forest, the government of India. White paper on pollution in Delhi with an action plan.
- Ostro, B. (2004). Outdoor air pollution: assessing the environmental burden of disease at national and local levels, Health aspects of air pollution with particulate matter, Ozone, and Nitrogen Dioxide. World Health Organization (W.H.O), Bonn, Germany.
- Peters, A., Dockery, DW. Muller, JE. And Mittleman, MA. (2001). Increased particulate air pollution and the triggering

of myocardial infarction. *Circulation*, 103, 2810-5.

- Routledge, HC., and Ayres, JG. (2005). Air pollution and the heart. *Occup, Med.* 55, 439-47.
- Schwartz, J. (1999). Air pollution and hospital admissions for heart disease in eight U.S. counties. *Epidemiology*, 10(1), 17-22.
- Schwartz, J. and Morris, R. (1995). Air pollution and hospital admissions for cardiovascular disease in Detroit, Michigan. Am J Epidemiol, 142, 23-35.
- Shireepour, Z. (2009). Investigation of seasonal and daily changes of air pollutants and its relation with meteorological parameters, *Journal of Physics of Earth* and Space, 35(2), 137-119. [In Persian]
- Tehran Municipality, Behesht Zahra Organization. (2007). Recorded Data of Deaths according to Death Certificate.
- Yang, Ch., Chang Ch., Chuang, HY. and Tsai, Sh.Sh. (2014).Relationship between air pollution and daily mortality in a subtropical city: Taipei, Taiwan. *Environ Res Public Health*, 11(5), 5081-5093.
- Zmirou, D., Schwartz, J., Saez, M., Zanobetti,
 A., Wojtyniak, B., Touloumi, G., Spix, C.,
 Ponce de Leon, A., Le Moullec, Y.,
 Bacharova, L., Schouten, J., Ponka, A. and
 Katsouyanni, K. (1998). Time Series
 Analysis of air pollution and cause-specific
 mortality. *Epidemiology*, 9(5), 495-503.