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1. Introduction
Empirical  work  using  both  micro  and  macro  data  have  shown  that
consumption is excessively sensitive to current income than what is
warranted by permanent income-life cycle hypothesis.1 The excess
sensitivity of consumption to income can be attributed, among other
things, to the lack of a perfect capital market. The fundamental
assumption of LC-PIH is that households maximise their lifetime
utility functions subject to their lifetime budget constraints when free
borrowing and lending to smooth consumption are possible. Imperfect
capital markets are largely characterized by borrowing or liquidity
constraints. A "liquidity constrained" household cannot borrow freely
to smooth its consumption trajectory over time, thus current income
becomes a major determinant of current consumption.
The importance and consequences of liquidity constraints in models of
consumption behaviour are discussed in section 2. Optimal control of
multi-stage dynamic model of consumption behaviour under liquidity
constraints  is  the  main  focus  of  the  remaining  four  sections  in  this
paper.

A rational forward-looking consumer is assumed to behave
according to a familiar Ramsey model with additively separable utility
function. Having a span of life T, the consumer is assumed to have an
initial financial wealth 0A and receives a real disposable income tY  in

period t. He consumes Ct in period t and it is further assumed that his
rate of time preference is !. Although the assumption of a known real
rate of return is rather binding, it is used here for mathematical
tractability. The assumption of an additively separable utility function
is also a restriction on consumer's preferences, but it is commonly
used in the literature because of its analytical convenience. It is further
assumed that there is no rationing in the goods market, so consumers
are not constrained by the purchase of goods and services.

The  problem  facing  the  consumer  is  to  find  the  optimal
consumption path which maximises his expected lifetime utility
function subject to a lifetime budget constraint and an additional
constraint on borrowing. This leads to the following maximization
problem in standard calculus of variation,

1. For the early work on this subject , see, for example, Hall (1978), Hall and Mishkin (1982),
Flavin (1985), Zeldes (1989), Cushing (1992) and Jappelli and Pagano (1994).
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It is assumed that " #)(tCU is increasing and strictly concave.
Inequality (3) implies the existence of liquidity constraint. This means
the consumer's end-of-period financial asset, after receiving income
and allowing for consumption expenditure, cannot be negative. In
other words, this inequality reflects the fact that consumers cannot
consume today the income which they receive tomorrow. This
condition can, of course, be generalised to
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where a is the limit on net indebtedness. Further generalization will
also be considered, for example, in equation (12).

2. The Importance and Implications of Liquidity Constraints in
Consumption Models
Liquidity constraints, as an explanatory variable in consumption
models, necessarily introduce a number of interesting theoretical
problems such as follows.
1. Liquidity constraints which represent the lack of financial
deepening, can be regarded as an important determinant in
consumption-saving behaviour in developing countries which are
usually characterised by financial underdevelopment.

Defining financial deepening as the increases in the ratio of
financial assets to GDP and defining excess sensitivity parameter as
the fraction of consumers who are more sensitive to current income
than what PIH implies, one expects the existence of an inverse
relationship between excess sensitivity parameter and financial
deepening. This leads to the hypothesis that McKinnon's type of
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financial liberalisation1 in  developing  countries,  which  would  ease
borrowing constraints, will reduce the exess sensitivity parameter. In
this regard, one can argue that, in general, liquidity constraints make
fiscal policies such as tax cuts or debt-financed fiscal spending more
effective. A fall in current income affects consumption behaviour in
developing countries more severely as compared to developed
countries because a large portion of consumers in developing
countries are liquidity constrained.2

2. The relationship between liquidity constraints and the aggregate
saving rate is interestingly complex. The inability of households to
borrow the desired amount in an imperfect credit market might lead to
higher saving rates as compared with saving ratios in developed
financial markets. This problem has received considerable attention in
the literature on consumption-saving behaviour. Let us briefly refer to
the early contributions. Hayashi, Ito and Slemrod (1988) have
examined this property for the United States and Japan; Jappelli and
Pagano (1994) have attributed the high saving rates in Italy to its
relatively underdeveloped consumer credit and mortgage markets;
Muellbauer and Murphy (1990) and Beyoumi (1991) argue that the
sharp decline of the UK saving rates in the 1980s might be due to
financial deregulations. By increasing saving rates, liquidity
constraints might induce capital accumulation and hence can stimulate
higher rates of growth.

The above conclusion might appear to be inconsistent with the
McKinnon type argument that financial developments enhance the
process of economic growth. McKinnon (1973) argues that by
removing credit rationing, the resulting competitive financial
intermediation promotes more efficient allocation of credit to
investment and thus higher rates of return on capital can be achieved.3

To reconcile the role of liquidity constraints in promoting growth rates
with the McKinnon-Shaw model of financial liberalisation, one has to
differentiate between credits to firms and credits to households
[Jappelli and Pagano (1994)]. Such differentiation can be rationalised
in view of the average loan size, informational asymmetries and the
cost of contract enforcement. However, the argument that "if banks ra-

1. See McKinnon (1973)
2. See, for example, Hubbard and Judd(1986) and Heller and Starr(1979)
3. See McKinnon(1973). See, also Fry (1984), Bencivenga and Smith (1991) and Greenwood
and Jovanovic (1990) among others.
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tion credits to households while making it available to firms
efficiently, capital accumulation and growth will be enhanced"1 might
be valid only within a static framework. The maximising behaviour of
firms will become adversely affected by the behaviour of liquidity
constrained households in a dynamic optimization context through the
resulting changes in households' demand.
3. Demographic structure of the population is likely to be a key factor
in explaining the relationship between liquidity constraints and saving
rates. Faster growth rates might stimulate the consumption of the
young and thus reduce saving rates.

Liquidity constraints usually apply more severely to the young
portion of population. The young usually find liquidity constraints
more binding in smoothing the consumption pattern over time. This is
a point of particular importance in modelling the nature and effects of
liquidity constraints in developing countries due to their higher
proportions of young population.

The existence of young population and the pervasive liquidity
constraints in developing countries make the Keynesian type
consumption function more data admissible. This does not, however,
reduce the importance of life-cycle pattern in consumption-saving
behaviour in these countries because savings during the middle years
would still be optimal if consumers wish to enjoy the period of
retirement. This explains the fact that fiscal policies in developing
countries which affect the current income is more effective to
influence the consumption-saving trajectory. Moreover, as Hubbard
and Judd (1986) argue, it is the young segment of the population
which strongly feel the implications of such current income
fluctuations.
4. Liquidity constraints may become closely linked with the concept
of informational asymmetries and the related notions of adverse
selection and moral hazards. The reason for the banks' unwillingness
to lend freely to households for consumption purposes might be the
uncertainties about households' future income as well as the risk of
default. That explains why borrowing against the purchase of durable
goods is not so binding because durable goods can be used as
collateral.

1. Jappalli and Pagano (1994), p. 84.
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Modelling the uncertainties associated with household's future
income has been an active research work in theoretical developments
in consumption theory. By adding the assumption of rational
expectations to the standard life-cycle-permanent income hypothesis,
Hall (1978) made the first significant attempt in formulating the
stochastic implications of income in a consumption function. The
household's decision on how much to borrow and save is not usually
independent of the uncertainties about future events. This makes the
question of insurance a matter of crucial importance in explaining
saving-consumption behaviour in developing countries. The absence
of an efficient system of insurance might further promote the
precautionary saving motives. It follows that, as Besley (1993)
maintains, savings, credits and insurance in developing countries are
closely related with one another and can best be analysed within a
unified theoretical framework.

Development of small scale indigenous financial institutions
operating in rural and urban areas can partially relax household's
liquidity constraints arising from their future income uncertainties.
Such financial institutions may successfully administer the optimum
allocation of loanable funds. The accuracy of information about
potential borrowers will minimise the risk of adverse selection and
moral hazards associated with credit allocation.
5. Household's uncertainties about their future income, a typical
characteristic of developing countries, stimulate precautionary
motives to save. These motives interact with liquidity constraints
because in an underdeveloped credit market where households are
usually unable to borrow when times are bad there exists an incentive
for higher savings in good times.
6. Although any relaxations of liquidity constraints through
improvements in consumer loan markets permit an individual to
increase his consumption, this incremental consumption should be
paid back with interest during the consumer's life-cycle. Provided that
the individual's real income does not grow enough, this interest
payment will constrain individual's future consumption. Despite the
fact that such a decline in future consumption might be consistent with
individual's utility maximisations a tendency may exist for aggregate
consumption to fall when the economy is not growing fast enough to
compensate for the aggregate interest payments.
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7. Assuming that liquidity constrained consumers generally are more
sensitive to current income variations as compared to liquidity
unconstrained individuals, and assuming further that liquidity
constrained and unconstrained individuals are usually the monetary
debtors and creditors, respectively, it follows that a significant
increase in the real rate of interest might have income redistributional
effect between borrowers and lenders. This will affect the level of
aggregate consumption through the existing differences between
marginal propensities to consume. Note, however, that in the absence
of liquidity constraints, the effect of changes in the interest rate on
consumption is usually expected to be minimal because the resulting
intertemporal substitution and wealth effects work in opposite
directions.
8. To the extent that the role of inflation on consumption behaviour is
reduced to the effects of inflation-induced changes in interest rates on
consumption, an increase in the rate of inflation may affect the
liquidity constrained consumption through interest rate variations.
9.  Provided  that  the  nominal  rate  of  interest  and  the  nominal  credit
ceilings are fully adjusted to accommodate the inflation rate,
consumption will remain unaffected because consumer's real wealth
has not changed. If the credit limit for liquidity constrained consumers
are not revised, they are forced in a position to reduce their
consumption in proportion to any higher loan repayments resulting
from the increased interest rates. To the extent that liquidity
constrained individuals reduce their consumption, the aggregate
consumption may decline following inflation.
10. Under the circumstances that an inflation rate does not change the
nominal rate of interest, the resulting fall in the real interest rate
implies a redistribution of income from liquidity unconstrained
lenders to liquidity constrained borrowers. The net effect on
consumption appears to be indeterminate not because substitution and
income effects work in opposite directions, but because there exists
uncertainties on the future rate of inflation which hinders liquidity
constrained consumers to increase their consumption in the first
instance. However, as inflation proceeds, liquidity constrained
consumers can increase their consumption.
11. The composition of consumer's asset portfolio is also important
because the higher the degree of asset's liquidity in consumer's
portfolio the lower would be the liquidity constraints. The purchase of
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illiquid physical assets (houses and lands) may affect the liquidity
constrained consumption behaviour in the following ways: i) it
reduces the portion of liquid assets in consumers’ portfolio, hence
increases the liquidity constraints, ii) it constitutes collateral for
borrowing, hence decreases the future liquidity constraints. Within
this context, the problem of credit rationing appears to be of prime
importance.

3. Optimality Conditions for Consumption Path with Liquidity
Constraints using the Method of Dynamic Programming
We show how the Lagrange multiplier measures the amount by which
consumer's utility will change resulting from the relaxation of
borrowing constraints. Recall the Euler equation for the optimal
consumption without liquidity constraints.1
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Our objective in this section is to generalize this equation to the case
where consumption is constrained by liquidities.  Consider a consumer
who wishes to maximise the following objective function
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1. See Appendix1.
2. See Appendix1 for the concept and derivation of functional recurrence equation in optimal
consumption functions without liquidity constraint. A generalization to consumption
functions with liquidity constraints is straightforward.
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where 3 is the Lagrange multiplier for liquidity constraints. Note that
the notation 4 has been reserved as the multiplier for the equation of
motion. Differentiate the right hand side with respect to Ct to obtain
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For the envelope relation, consider a small variation in At in equation
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If we now transfer the second and the third terms in equation (7) to the
right hand side and then multiply both sides by )1( r' we obtain
exactly the right hand side of equation (8). We can then write
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Equation (10), which is the generalization of equation (5), is the
optimality condition for consumption behaviour of a consumer with
liquidity constraints. 3 which is the Lagrangian multiplier associated
with the liquidity constraint measures the amount by which
consumer's utility will change if current constraints on borrowing
become relaxed by one unit. In other words, 3 represents the amount
by which the marginal utility of borrowing will increase at period t by
reducing the consumption next period. If 3 becomes zero, the liquidity
constraint will be totally relaxed and the optimality condition (10) will
be the same as in equation (5) where the marginal rate of substitution
equals the marginal rate of transformation.

4. The Generalized Hamiltonian, Liquidity Constraints and the
Rejection of Hall's Random Walk Hypothesis
In section 3, we used Bellman's dynamic programming to derive the
optimality conditions in consumption path when liquidity constraints
were binding. In this section, we first obtain the same result, i.e.
equation (10), by applying the generalised Hamiltonian function in the
maximum principle and then, using Pontryagin maximum principle
we demonstrate the rejection of Hall’s random walk hypothesis when
liquidity constraints bind.

Specifically, we answer the following two questions in this section:
i) how can the existence of liquidity constraints directly influence the
rate of change in the optimal consumption trajectory; and ii) how does
the Hall's random walk hypothesis of consumption collapse when an
individual consumer is facing with the liquidity constraint. These two
questions and particularly the latter are of prime theoretical value
since our results here constitute, for the first time, a strong theoretical
framework for empirical tests because it explicitly formulates the
effects of liquidity constraints on optimal consumption path.

We assume that consumers, in an imperfect capital market, face an
upper limit to their net indebtedness which is a function of their
income. The problem is to maximize the objective function, [equation
(1)],
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subject to the asset transition equation (2) which in control
terminology is usually called the equation of motion or system
dynamics. Equation (2) can be written as1
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and the assumption of liquidity constraints,
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where a is the limit of net indebtedness.
Define the Hamiltonian equation,
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where )(t4 is the adjoint variable. The control variable, )(tC , should
maximise H subject to the inequality constraint (12). Writing the
inequality (12) as 0)()( ('' tbYatA , we can construct the
generalised Hamiltonian as follows,
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Equation (13) gives the optimal consumption )(tC as a function of the
adjoint variable )(t4 . To obtain the time path of the adjoint variable,
we use the canonical equation, i.e.
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1. See Appendix 2
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To obtain the properties of optimal consumption policy, we
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(13) with respect to time. Since " #)(tCU )  is a function of )(tC , we
have

" # " # ),()(
)(

)( ttCUEee
dt

tdC
EtCUE tt 4! !!  &)%)) %%

and by using the equation for )(t4 we obtain

" # " #1 2 ).()()()()( ttretCUEtCEtCUE t 34! ! %%&)%)) % 

Substituting equation (13) into the right hand side of the above

equation and dividing both sides by te !% , we have

" # " # " # ,)()()()()( tettCUrEtCUEtCEtCUE !3! %)%&)%))  

or

" #
" # " #.)(

)(
)(

)(

)(

tCUE

et
rtCE

tCUE

tCUE t

)
%&'%

)
)) !3

! 

Assuming that

(15) " #,)(

)(
)(

tCUE

et
t

t

)
&

!3
<

and noting that
" #
" #)(

)(*

tCUE

tCUE
a )

))
%&=  is the coefficient of absolute risk

aversion, we have,

(16) ).()(* trtCEa <!= '%& 



Properties of Optimal Consumption under Liquidity Constraints …  13

Equation (16), is an important result in consumption optimization
when liquidity constraints bind. This equation implies that with a
concave utility function, where " #)(tCU ))  is negative and thus the
coefficient of absolute risk aversion is positive, if liquidity constraints
are binding at time t, i.e. 0)( >t< , then the optimal consumption

increases, 0)( >tC , provided that the interest rate is more than or
equal to the subjective rate of time preferences, i.e. !(r . If liquidity
constraints are not binding, 0)( &t< , then consumption will increase
if !>r . However, equation (16) implies that with a concave utility
function, the existence of liquidity constraints makes the optimal
consumption to grow, not only when the interest rate is more than or
equal to the subjective rate of time preference ( !(r ), but even when

!?r , provided that !< %> rt)( .  Under  such  conditions  one  may
conclude that the liquidity constraint may shift the optimal
consumption profile forward even when the rate of time preference
exceeds the interest rate.

We now prove that the existence of liquidity constraints invalidates
the Hall's ran- dom walk hypothesis of optimal consumption. Recall
that the Hall's hypothesis has been frequently tested for the
explanatory power of variables (other than consumption) in predicting
consumption for the next period. Hall's hypothesis has been rejected
since variables such as lagged stock prices or lagged income proved to
be significant in explaining current consumption [see, for example,
Hall and Mishkin(1982) and Zeldes (1989)]. It is well-known that the
failure of random walk hypothesis of consumption is usually
attributed to the presence of liquidity constraints, thus the existence of
liquidity constraints and its impact on con- sumption have been tested
indirectly. I have been unable to find, in the published literature on
this subject, a complete theoretical treatment which shows i) how the
existence of liquidity constraints can directly affect the optimal path of
con- sumption and ii)  how  the  random  walk  hypothesis  of
consumption breaks down when liquidity constraints are binding. I
have answered the former question by deriving equation (16) and will
answer the latter as follows.
Using the mean value theorem, we can write equation (16) as
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is defined in equation (15) and )(t3 is the adjoint variable associated
with liquidity constraint in the generalised Hamiltonian function.
Equation (17) implies that with a concave utility function, the
expected value of optimal consumption increases when i) !(r and
ii) !< %> rt)( even if !?r . Moreover, equation (18) indicates that
the  Hall's random walk hypothesis can be rejected if liquidity
constraints bind, i.e. 0)( At< . This result holds even under the
condition !&r .

5. Time-varying Interest Rates and the Properties of Optimal
Consumption Path under Liquidity Constraints
As discussed before, the Euler equation approach in modelling
consumer behaviour, which has been initiated by Lucas (1976) in his
critique of standard estimation of consumption function, is based on
the first order conditions in an individual's intertemporal optimization
problem [equation (5)]. We have also noted that the rejection of the
Euler equation1 has been related to the existence of liquidity

1. See, for example, Flavin(1982, 1985), Muellbauer (1983), Mankiw, Rotemberg, Summers
(1985) and Campbell and Mankiw (1989) for the early work on this subject.
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constraints.1 Note  that  the  tests  for  the  existence  of  liquidity
constraints are usually carried out either indirectly, or are simply
based on a particular assumed consumption-income relationship. Such
problems in modelling the existence of liquidity constraints, within a
rational expectations life-cycle-permanent-income hypothesis, are
mainly rooted in the difficulties associated with finding satisfactory
proxies for liquidity constraints. King (1986), Hayashi (1987) and
Muellbauer and Latimore (1995) are among the earlier work which
have reported the achievements in modelling the liquidity constraints
in this direction.

It is possible to relax this theoretical shortcoming substantially by,
first, introducing a function representing the structure of liquidity
constraints (or the nature of capital market imperfections) and then
accommodating this function within an individual's intertemporal
optimization problem. This approach, which was adopted in the
previous  section,  will  be  further  developed  here.  We  show  how  the
generalised Hamiltonian function can be useful in modelling this
problem.

In section 5.1 we will obtain an equation similar to equation (16) in
which the change in consumption is related to the liquidity constraint,
interest rates and consumer's time preferences. However, time-varying
interest  rates  do  not  change  our  general  conclusion  which  states  that
the existence of liquidity constraints necessarily results in an
increasing consumption over time if the interest rate becomes equal to
the subjective rate of time preferences. However, when !?)(tr , the
consumption might not increase even if liquidity constraints bind.
This, of course, depends entirely on the severity of the liquidity
constraints: the condition !< %> )()( trt  might ensure a forward shift
of optimal consumption profile when consumer's time preferences
exceed the rate of interest. Using the Kuhn-Tucker conditions, we will
analyse, in section 5.2, the interactions between time-varying interest
rates, the utility discount rate and the severity of liquidity constraints.
This  section  generalises  the  results  of  HelIer  and  Starr  (1979)  to  the
case where the interest rate is time-varying and the liquidity constraint
specifies the consumer's net indebtedness as a function of income.

1. See, for example, Hall and Mishkin (1982), Hayashi (1985) and Zeldes (1989) for the early
work on this subject.
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Using an inverse relationship between the coefficient of absolute
risk aversion and the intertemporal elasticity of substitution, we
obtain, in section 5.3, a relationship in which the intertemporal
elasticity of substitution appears as the coefficient of liquidity
constraint. This produces the important result that the re- sponse of
optimal consumption to variations in the severity of liquidity
constraints will be conditioned by the consumer's intertemporal
elasticity of substitution.

5.1. Time-varying Interest Rates and Liquidity Constraints
This section generalises the results we obtained in section 4 by using a
time-varying interest rate. In equation (16), we demonstrated the
effects of liquidity constraints on the optimal time path of
consumption,  and  equation  (17)  clearly  showed  how  the  existence  of
liquidity constraints could invalidate Hall's random walk hypothesis of
consumption. We will examine these results under the condition of
time-varying interest rates. The generalised Hamiltonian function will
be used throughout.
The problem is to maximise the following objective function,
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subject to the asset transition equation,
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and the following constraints on borrowing, i.e., equation (12),
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Note that the specification of the objective function and liquidity
constraints are as before whereas the asset transition equation
embodies a time-varying interest rate.
Defining the generalised Hamiltonian as
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Differentiating equation (21) with respect to time and substituting for
)(t4 from equation (22) yields
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where a= is the coefficient of absolute risk aversion and aa E== &* .

Equation (23) is the generalization of equation (16), and it is assumed
that  the  interest  rate  is  not  constant.  According  to  equation  (23),  for
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any concave utility function, where 0>a= , the existence of liquidity

constraints, 0)( >t< ,  does  not  necessarily  result  in  an  increasing
consumption over time. This is due to the variability of the interest
rate. Despite structural similarities between equations (23) and (16),
one can argue that for periods in which !?)(tr , consumption might
not increase due to the existence of liquidity constraints if

)()( trt %? !< . Moreover, the condition !< %> )()( trt ensures that
optimal consumption profile will shift forward even if !?)(tr .

5.2. Liquidity Constraints and the Interactions between r(t) and !!
In the previous section we proved that the effect of liquidity
constraints on the pattern of optimal consumption over time depends
on  the  relative  magnitude  of  time  varying  rates  of  interest,  the  utility
discount rate and the severity of liquidity constraints. In this section,
we show that the Kuhn-Tucker conditions for optimization of
consumer's utility over time can provide a useful relationship between
these factors. Heller and Starr (1979) have used the Lagrangian
approach to the same problem with time-invariant interest rates and a
liquidity constraint in the form of non-negative assets, i.e. 0)( (tA .
This section extends their analytical framework and generalises their
results by introducing i) time-varying interest rates and ii) a liquidity
constraint which specifies consumer's net indebtedness as a function
of his income.
Consider an individual consumer maximising the following discrete
utility function,

(24) ,)()1(Max
0
0
&

%'&
T

t
t

t CUJ !

subject to the following asset transition equation

(25) ,)1(1 ttttt CYArA %''&'

and the liquidity constraints,

(26) .tt bYaA %%(
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It is assumed that the consumer's initial asset is non-negative and is
given, i.e.

.0*
0 (A

The Lagrangian function for this problem is
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The second term in equation (27) includes At and 1'tA . To avoid

problems which might arise in differentiating L with respect to tA , we

can divide the planning horizon in the Lagrangian as follows,
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The Kuhn- Tucker necessary conditions for an optimum are
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with complementary slackness,

 (29) ,0&
5
5

tA

L

(30) ,0,0 slacknessarycomplementwith
L

t
t

((
5
5 4
4

(31) .0,0 slacknessarycomplementwith
L

t
t

((
5
5 3
3

Assuming 'C&) )0(U , the condition 0>tC  in equation (28) ensures

that the left hand inequality binds, i.e.

(32) .0)()1( &%)' %
tt

t CU 4!

From equation (29) we have
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,0)1( 1 &'%' % ttttr 344

or

(33) .)1(1 tttt r 344 &'%%

In equation (30),
45
5L

 gives the asset transition equation which is an

equality by definition. Therefore,
45
5L

 is binding and thus )(t4 should

be slack, i.e.

(34) .0(t4

By the same argument, equation (31) gives

.0,0 slacknessarycomplementwithbYaA ttt (('' 3

If our liquidity constraints bind, then we have

(35) ,0(t3

or

(36) 0)( &'' ttt bYaA3

Equation (36) implies that the Kuhn- Tucker multiplier for liquidity
constraint is non-zero if equation (26) holds, i.e. liquidity constraints
bind. By equation (33) we have

(37) ,)1(1 ttt r 44 '(%

if t3  is nonnegative. According to equation (36), if liquidity

constraints bind then (37) holds with strict inequality. From equation
(32) we have
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or alternatively,
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(38) ,)1()( 1
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which by substituting equation (37) for 1%t4 yields
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From equation (32) we know that
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Substitute equation (40) into equation (39) to obtain
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Equation (41), which is based on the assumption of binding liquidity
constraint, is an important result. It clearly invalidates Hall's random
walk hypothesis.

Recall that Hall's random walk hypothesis of consumption is based
on the assumption of equality between interest rate and subjective
time rate of discount.
Equation (41) implies that even if !&tr , we have

(42) ).()( 1 tt CUCU )>) %

With regard to the assumed concavity of utility function, i.e.
0)( ?)) tCU , equation (42) implies that consumption is increasing over

time whenever the liquidity constraint is binding.

5.3. Interest Rates, Intertemporal Elasticity of Substitution, and
Liquidity Constraints
It is well known that the effect of interest rate variations on
consumption can best be analysed by intertemporal elasticity of
substitution. I will demonstrate how the optimal control theory can
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contribute towards formulating this problem by utilising the
coefficient of absolute risk aversion.

Let us now present our formulation of interactions between interest
rates, intertemporal elasticity of substitution and liquidity constrained
consumption. Intuitively, the intertemporal elasticity of substitution
can be negatively related to the coefficient of absolute risk aversion.
Defining

" #
" #
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as the coefficient of absolute risk aversion (CARA), we know that
" #)(tCU )) is a measure of concavity of the utility function. It is known

that a consumer with a sharply concave utility function will, according
to LC-PIH, avoid intertemporal substitution and will, therefore, prefer
to smooth the consumption path over his planning horizon. Since

" # 0)( ?)) tCU , such consumers will have high a= which accompanies a

low intertemporal elasticity of substitution. The same argument
applies for constant relative risk aversion r= defined as [see Selden

(1978)],
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It should be noted that only for some class of utility functions is the
intertemporal elasticity of substitution just equal to the reciprocal of
the coefficient of absolute risk aversion [see Hall (1985)]. However as
Hall (1988) reports, it seems that the best way to estimate the
intertemporal elasticity of substitution is simply by regressing the log-
change in consumption on the expected real interest rate because,
intuitively, the rate of change in consumption over time can reveal the
magnitude of the intertemporal elasticity of substitution in
consumption.

In what follows, I derive an approximate relation between the
intertemporal elasticity of substitution and the coefficient of absolute
risk aversion. Using this relationship, I will then show how the time-
varying interest rate and liquidity constraint can affect the changes in
optimal consumption through the intertemporal elasticity of
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substitution. More specifically, we demonstrate that the consumer's
intertemporal elasticity of substitution will condition the response of
optimal con- sumption variations to liquidity constraints.
Defining the intertemporal elasticity of substitution as

(43)
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and expanding " #)1( ') tCU  by a Taylor series, we have

" # " # " # .)()1()()1( !'))'E')&') tCUtCtCUtCU

Dividing both sides by " #)(tCU ) yields
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Note that
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 in the second term on the right hand side of

equation (44) is exactly a= with an opposite sign. Thus a= will be

negatively related to
" #
" #)(

)1(
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')
 on the left hand side of this

equation. This completes our proposition that the coefficient of
absolute risk aversion and intertemporal elasticity of substitution are
inversely related, i.e.

(45) ).(1 D= %& fa

We can now return to our familiar consumption optimization problem
with  a  liquidity  constraint  of  the  form )()( tbYatA %%( and an asset
transition equation with time-varying interest rate. Recall equation
(23), which was obtained by the application of Pontryagin's maximum
principle, namely,

),()()( ttrtCEE a <!= '%& 

where )(t< was defined as
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and )(t3 is the adjoint variable associated with the liquidity
constraint. Substi- tuting equation (45) into equation (23) gives

(46) ).()()()()()( tfftrftCE <D!DD '%& 

Equation (46) has important implications. It clearly specifies how the
rate of interest affects the change in consumer's optimal consumption
trajectory through the intertemporal elasticity of substitution as its
coefficient. Moreover, it states that the intertemporal elasticity of
substitution appears as the coefficient of the liquidity constraint.
Equation (46) implies that the response of optimal consumption to
liquidity constraints will be conditioned by the consumer's
intertemporal elasticity of substitution. It is interesting to examine the
term )()( tf <D . This term captures simultaneously the effects of i)
pure preference parameters such as the utility function and the
subjective rate of preference; ii) interest rate variations; and iii)
structural parameters in the credit market which are manifested in the
formulation of liquidity constraints. The first two factors are reflected
by the intertemporal elasticity of substitution and the third factor is
captured by )(t< . Moreover, according to equation (46), the time-
varying interest rate affects the relationship between liquidity
constraints and optimal consumption policies through its effects on the
intertemporal elasticity of substitution.

6. Considerations on Optimal Consumption in a Stochastic
Environment: The Basic Shortcomings of Optimal Control
Approach
The discussion we had so far on deterministic dynamic choice-
theoretic consumption models was based on the following
assumptions: 1) The utility function, representing preferences for the
objective of choice, is monotonically increasing and strictly concave;
2) Constraints facing the agent can be summarised in a budget
constraint; and 3) The agent's optimal choice maximises utility over
the planning horizon subject to the assumed constraints. We have also
used the following auxiliary assumptions: 1) The agent is assumed to
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be rational; 2) The agent's planning horizon is the lifetime of himself
(and his spouse if applicable and not of his parents or mature
children); 3) The agent has direct access to perfect capital and
insurance markets; 4) The agent must be solvent at the end of the
planning period; and 5) The intertemporal utility function is additive
and depends on real consumption expenditures in each period.
Moreover, it is assumed that the following variables are given: the
length of the agent's lifetime or the planning horizon, the rate of return
on  investment,  and  the  non-interest  income  which  is  also  assumed  to
be exogenous. Different variants of the standard choice-theoretic
consumption models are possible. An example is the existence of
borrowing constraints which yields the liquidity constrained
consumption models discussed in sections 4 and 5.

Within the above context, uncertain lifetime and uncertain future
income are the two major sources which give rise to stochastic
optimal consumption behaviour. Despite the importance of uncertain
labour income in deciding on optimal consumption plans as well as a
great deal of research work on life cycle and permanent income
hypotheses, "yet, closed form decision rules for optimal consumption
in the presence of uncertain labour income have not, in general, been
derived. It seems strange that so much theoretical and empirical work
has been done studying consumption and yet we do not even know
what the optimal level of consumption or sensitivity of consumption
to income should be in most very simple settings" (Zeldes, 1989, p.
275).

Considerations regarding the failure of Euler approach, from a
control theoretic point of view, in explaining optimal consumption
behavior can be summarized as follows:
1. Uncertain lifetimes can partially be responsible for uncertainty in
future non-interest income simply because the latter is contingent on
the survival of the agent and, therefore, becomes uncertain.
2. The assumption of dependency of utility derived from consumption
on health invalidates the simple structure of the objective function
defined earlier.
3.  For a multiple-person family, the uncertain lifetime renders the
maximisation of the objective function subject to the asset transition
equation and the liquidity constraints, inexpressible in a deterministic
form presented in sections 4 and 5.
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4. Multiple-person families pose serious problems for optimal
consumption plans when lifetimes are uncertain. Optimal consumption
in each period is contingent on family consumption in that period as
well as on the probability distribution of future family consumption.
The complicated mathematical expectations of family compositions at
different periods make it difficult to apply the method of dynamic
programming to derive closed form solutions for optimal consumption
decisions. An alternative approach is to assume that the family
behaves as if expected family consumption in each future period will
be realized with certainty. Mariger (1986) has used this approach to
model the econometric specification of optimal consumption
behaviour with uncertain lifetimes. The difficulty is to revise, at each
period, the expectations of family composition in future periods in
order to reflect the new information which has become available to the
family. It follows that the optimal family's consumption plan cannot
be projected without the knowledge of the time-paths of family
composition since the optimal consumption plan is contingent on this
composition.
5. It was usually agreed that "it is not possible to obtain a closed-form
solution for the optimal consumption plan when future labour income
is uncertain" (Mariger, 1986, p. 59). The usual remedy was to
eliminate all relevant income uncertainties by assuming a full
insurance for net labour income in each period provided that at least
one family member is alive. Note that there is no incentive for a
single-person family to purchase such insurance.
Capital income uncertainty, or more specifically, rate of return
uncertainty, poses serious problems for dynamic optimal consumption
decisions. The standard procedure is to take expectations over the
portfolio rate of return with risky assets. The difficulty arises because
the individual consumer must evaluate, in each period, the likelihood
of becoming liquidity constrained in future periods when deciding on
optimal current consumption. Simplifying assumptions can, of course,
help towards obtaining a tractable solution. For example, it is usually
assumed that the joint distribution of asset returns in each future
period is known in the initial stage.1

Hakansson (1970), as the pioneer worker in this field, considers an
agent facing risky assets whose rate of return are independently and

1. See Hakansson (1970) and Merton (1971) for the early seminal work on optimal
investment and consumption strategies under risk.
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identically distributed over time. He assumes that the intertemporal
utility function is additive and is of the isoelastic form. Merton (1971),
as another pioneer researcher in this field,  essentially considers the
same problem for the continuous case where he assumes a Weiner
process for asset returns. The assumption that the joint distribution of
asset return in each period are known in the initial period ensures that
all the relevant past information is reflected in the current level of net
worth. Hence, future wealth is the only uncertain variable in the model
which is relevant to future consumption. Optimal consumption plan
can thus be reduced to a consumption-investment plan contingent on
wealth in each period. Note that the assumption of independently
distributed capital returns plays a key role in this dynamic
optimisation, since, otherwise, optimal consumption in each period
would  be  contingent  not  only  on  wealth  but  on  the  sequence  of  past
related rates of return on risky assets.

An important finding of Hakansson and Merton is that the demand
for risky assets in each period is proportional to wealth, the proportion
depending only on the joint distribution of asset returns. Moreover, the
increased capital risk decreases (increases) the propensity to consume
wealth in each period if F is less (greater) than zero, and F is the
exponent on consumption in an isoelastic utility function (used in
Hakansson and Merton work) which measures the degree of concavity
of the intertemporal utility function. A large value of F implies a
larger consumption growth rate if the rate of interest exceeds the
coefficient of time preference. It should be noted that according to
Rothschild and Stiglitz (1971), a capital asset is riskier if the uncertain
rate of return, r, is augmented to G'r , where G is distributed as white
noise.

The studies mentioned above, did not, unfortunately, pay much
attention to the important role of liquidity constraints in their analysis
of the impact of stochastic rate of return on optimal consumption
plans. Recall that their major findings imply that the proportion of
wealth invested in risky assets depends only on the joint distribution
of asset return, that is, it is independent of the size and the
composition of agent's wealth. It follows, therefore, that the individual
consumer should borrow heavily in the early phases of the life cycle
when his full wealth is mainly in the form of future earnings. Hence,
an optimal portfolio choice can only be modelled correctly when
liquidity constraints are fully taken into account. The converse is also
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true: an optimal consumption plan which takes liquidity constraints
into account but does not acknowledge the effects of portfolio choice
on risky assets will be equally inaccurate.

The findings of Hakansson and Merton, initially developed for a
two-period model, were then generalised by Sibley (1975) and Miller
(1976) for a multi-period optimal consumption plan with uncertain
income. They showed that the results obtained by Hakansson and
Merton are true for multi-period models. They also showed that
beginning at any initial level of uncertainty on income, the
precautionary saving increases with a Rothschild-Stiglitz (1970)
mean-preserving spread on income. These results were further
generalised by Zeldes (1984) to account for the sensitivity of
consumption to wealth or to transitory income, i.e. the slope of the
consumption function rather than its level. Using a second-order
Taylor expansion of marginal utility, Zeldes showed that with constant
relative risk aversion adding uncertainty raises the slope of the
consumption function. This implies that income uncertainty makes
consumption more sensitive to transitory income than under certainty
equivalence. An interesting related result is that with constant absolute
risk aversion the consumption function would shift downward in a
parallel way when uncertainty is added, leaving the slope unchanged.
In a similar development, Roel (1986) and Kimball (1988) have
shown that excess sensitivity will occur for a class of utility functions
that include constant relative risk aversion and excludes constant
absolute risk aversion.1

6. Modelling stochastic future income in an individual's optimal
consumption behaviour has always been a challenging issue. The early
attempts in this field assumed that the individual consumer behaves as
if expected future income is certain (see, for example, Hall and
Mishkin, 1982). However, the seminal work of Dreze and Modigliani
(1972) can be regarded as the most influential early contribution on
optimal consumption decisions under uncertainty. It should be noted
that Dreze and Modigliani's work benefited from the earlier work of
Leland (1968) and Sandmo (1970) on optimal saving decisions under
uncertainty.

The early works on closed-form solutions for dynamic optimal
consumption plans with stochastic income and constant absolute risk

1. See also Deaton (1991), Carroll (1992, 1994) and Flavin (1993).
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aversion have been reported by Schechtman and Escudero (1977),
Caballero (1987) and Kimball and Mankiw (1987), among others.
Zeldes (1989)] is the first author who has successfully formulated an
exact closed-loop solution for optimal consumption with uncertain
income and a utility function which is constant relative risk aversion.
Following Hall and Mishkin (1982), Zeldes assumes that income can
be decomposed into two separate components. The first is the
"lifetime" or permanent component which is assumed to follow a
geometric random walk and is disturbed at each period by a random
shock which captures the effects of pay rises, job changes, health
changes and other similar persistent factors. The other component is
the transitory component which is assumed to follow an MA(2) and is
hit each period by a random shock representing the effects of one-time
bonuses, unemployment spells and other similar transitory factors. It
is assumed that these two components are separately observable.

Zeldes (1989) has, for the first time, used the stochastic dynamic
programming to calculate the optimal consumption plan with
uncertain income. He formulated the problem simply as a stochastic
control problem with only one state variable (wealth), one control
variable (consumption) and one disturbance variable (income). Using
a technique of Bertsekas (1976) in stochastic dynamic programming,
Zeldes discretized the state space into an S element grid. Beginning
from the terminal period, a backward induction is used to solve for the
value function and the cor- responding optimal consumption. At each
stage, the sum of current utility and the discounted expected value of
next period's value function was maximised to yield the optimal level
of consumption. It is well-known that the accuracy of the results
depends  upon  the  width  of  the  grid  used  for  the  discretization  in  the
stochastic dynamic programming framework. The approximate errors
can thus be made arbitrarily small by narrowing the width of the grid
at the expense of more computing time and excessive computer
memory known as the curse of dimensionality in Bellman's dynamic
programming.

However, Zeldes (1989) reports that the resulting consumption
function is quite different from the certainty equivalence benchmark.
The rational individuals with constant relative risk aversion develop
an optimal consumption plan which "exhibits excess sensitivity to
transitory income, hence they save too much and have expected
growth of consumption that is too high relative to the simple
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permanent income hypothesis benchmark even in the absence of
borrowing constraints" (pp. 295-296).
7. Assuming that an individual consumer is facing an uncertain future
income poses serious problems in the computational aspects of
optimal control applications to consumption optimisation. Using
Bellman’s dynamic programming, the numerical complexities in
calculating optimal consumption path when future income in
uncertain, may render the standard optimisation of rational
expectations permanent income/life cycle hypotheses unacceptable
models of individual's consumption behaviour. However, the
application of alternative optimal control techniques, i.e. Pontryagin’s
maximum principle, is not promising either since obtaining a closed-
form solution, when income is stochastic, requires complicated and
heavily involved iteration techniques.

We are, therefore, faced with a very serious methodological
problem in the formulation of dynamic intertemporal consumption
decisions with stochastic income. Computational complexities
inherent in the method of stochastic dynamic programming and the
maximum principle play the key role in this problem. The basis of the
argument, which also constitutes a criterion for assessing the
usefulness of an optimisation procedure, is best explained by
Pemberton (1993, p. 3): "For the optimal solution to a model to be a
useful guide to actual behaviour requires that the relevant agents in the
real world can themselves identify and attain the solution (though not
necessarily by using the same methods)". On the basis of this
criterion, the standard stochastic dynamic programming and the
maximum principle fail to be accepted as efficient and practical
optimisation methods in dynamic optimal consumption decisions
because of the inherent excessive backward inductive procedures.  In
fact, "either the problem gets so hideously complex that it is beyond
the computational power of the decision-maker, or the sequence of
implications stretches so far into the future that the consequences get
shrouded in the mists of time" (Hay, 1983, p. 137).

Friedmanite defence of optimization, which heavily depends on
"natural selection", "intuition" and "practice and/or learning" cannot
save the optimal control applications from the failure in dynamic
optimisation of consumption.  Recall that in an optimal control of
rational expectations permanent income/life cycle hypotheses, the
optimal current consumption is contingent on future optimal decisions
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on consumption. Neither practice nor learning from past mistakes can
make it easier to compute the optimal consumption sequence.
Although the Euler equation, which is the necessary condition of
optimisation, gives an intuitive meaning on balancing the marginal
utilities of consumption in two periods, it does not provide any
corresponding intuition for the actual consumption decisions.
Moreover, "every individual consumer has to solve his or her own,
unique lifetime backward induction problems and no as if
simplifications are available" (Pemberton, 1993, p. 5). Thus, Fried-
man's natural selection argument and the associated concept of innate
abilities, do not apply to the dynamic optimisation of consumer
behaviour.

7. Summary and Concluding Results
A brief analysis of the theoretical problems associated with liquidity
constraints in households' consumption behaviour presented in section
2.  By  examination  of  the  properties  of  the  optimal  consumption  path
when liquidity constraints are binding, I have produced a number of
results, with and without time-varying interest rates. These results,
which are presented in sections 3, 4 and 5 include the followings:
i) By using the method of dynamic programming together with the
envelope theorem, I obtained the optimality condition in terms of the
Lagrange multiplier associated with the liquidity constraints. This
multiplier represents the amount by which the consumer's utility will
change if current constraints on borrowing become relaxed by one
unit.
ii) By using the generalised Hamiltonian function in the maximum
principle, I have shown how liquidity constraints can directly affect
consumption behaviour along the optimal path.
iii) Again, by using the generalised Hamiltonian, I have shown how
the existence of liquidity constraints rejects the Hall's random walk
hypothesis. We know that the effects of liquidity constraints on
consumption are usually tested indirectly. Our result here is of prime
theoretical value because, for the first time, it gives an explicit
relationship between liquidity constraints and the random walk
hypothesis.
iv) The above result has been obtained under the conventional
assumption that an individual's net indebtedness is a constant function
of his income. By using the generalised Hamiltonian, I have shown
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how different formulations of liquidity constraints can, in principle, be
handled in dynamic optimization problems of consumer choice.
v) I have shown, using the Hamiltonian approach, how time-varying
interest rates can affect consumption variations along the optimal
consumption trajectory.
vi) Using the Kuhn-Tucker conditions, I have obtained an explicit
relation which demonstrates how the existence of liquidity constraints
can reject the Hall's random walk hypothesis. The same result has
been obtained earlier in this paper by using the generalised
Hamiltonian function. The application of the Kuhn-Tucker conditions,
however, provides a better insight into the possible interactions
between time-varying interest rates and the utility discount rate.
However, the generalised Hamiltonian function has much wider
capabilities in treating different models of liquidity constraints.
vii) I have obtained an approximate negative relation between the
coefficient of absolute risk aversion and the intertemporal elasticity of
substitution. I used this relation to generalise the above results further.
The results obtained are useful since they specify the followings:
1. How the time-varying interest rates affect optimal consumption
through intertemporal elasticity of substitution which acts as a
coefficient.
2. How the intertemporal elasticity of substitution, which has appeared
as the coefficient of liquidity constraint, affects the optimal
consumption behaviour. It should be noted that equation (46) has an
interesting property: it simultaneously captures the effects of the
following variables on the optimal consumption path: i) the pure
preference parameters; ii) the interest rates variations; and iii) the
structural parameters prevailing in the credit markets which are
manifested in modelling of liquidity constraints.
Our analysis of the optimal consumption behaviour in a stochastic
environment (section 6) shows that the departure from the certainty
equivalence, and assuming that an individual consumer is facing an
uncertain future income, poses serious problems in the application of
optimal control theory to dynamic optimisation of consumption.
Numerical complexities in calculating the optimal consumption paths
with future uncertainties are beyond the capacity of a representative
consumer. Hence, the backward induction procedure inherent in
stochastic dynamic programming, as well as the iterative techniques
associated with the maximum principle, may be unacceptable
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optimisation methods because the relevant agent in the real world
cannot identify and attain the solution.

Appendix 1
In this Appendix we derive the familiar Euler equation for optimal
consumption by using the functional recurrence equation of dynamic
programming together with the envelope relation.
We start by defining the time-varying optimal value function )( tt AV

as
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All the terms are defined earlier. Equation (47) implies that the
optimal value function is the present discounted value of expected
utility evaluated along the optimal trajectory. For example,
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Note that At is the only state variable in the model which is being
directly affected by the only control variable in the model, i.e. the
consumption tC . Thus, the optimal value function is a function of the

asset variable only. One can argue that the optimal value function is a
function of conditional joint distribution of future labour income and
rates of return. However, because our equation of motion for 1'tA

does not allow for the impact of consumption on conditional joint
distribution of future income (or the rate of return), these variables
cannot be included as arguments in the optimal value function. The
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fact that the optimal value function is time variant captures the
possibility of having different forms of this function over time.
Using equation (47), we write the functional recurrence equation as
follows,
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Equation (48) is based on Bellman's principle of optimality. To
maximise the right hand side of equation (48) subject to our equation
of motion, we take the derivative of the right hand side with respect to
Ct. This gives
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The functional form of the value function in equation (49), which is
the first order condition for optimality, is not known. We, therefore,
cannot make any significant progress by using equation (49).
However, we can use the envelope relation between )( tCU ) and

)( tAV ) along the optimal trajectory. Consider a small variation in At

in equation (48). We have
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which by using the equation of motion becomes
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Upon using equation (49) we have

(50) ).()1()( tt CUrAV )'&)

According to the envelope relation (50), the marginal value of
financial assets along the optimal trajectory, is equal to the marginal
utility of consumption multiplied by )1( r' . In other words, the
marginal value of financial assets is equal to the increase in marginal
utility of consumption at time t + 1 viewed as of time t.

The appearance of )1( r' in envelope relation (50) refers to the
fact that the term Ct has entered the equation of motion at the end of
period t while the financial asset At is  assumed  to  be  known  at  the
beginning of the period. Hence, 1'tA in the equation of motion, is a

function of tAr)1( ' , whereas tt CY %  is not multiplied by )1( r' . If

we model the equation of motion as

(51) ),)(1(1 tttt CYArA %''&'

the envelope relation would then appear as

(52) ).()( tt CUAV )&)

Substituting the envelope relation (50) into the first-order conditions,
equation (49), yields
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Equation (53) is the Euler Equation for the optimal consumption-
saving problem. Note that changing the equation of motion to
equation (51) and using the envelope relation (52), will not alter the
Euler equation.

The Euler equation (53) is nothing but the generalization of
Keynes-Ramsey condition under uncertainty; that is, the marginal rate
of substitution between consumption in two periods is equal to the
marginal rate of transformation. According to the Euler equation, if a
consumer at time t reduces the consumption by CE and invests the
resulting saving at the rate of interest i and consumes the proceeds at
time t +1, then the decrease in utility at time t, which is )( tCU ) , must

be equal to the increase in the expected utility at time t + 1, i.e.

)()1( 1')' tCUEr , viewed as of time t, i.e. " #)()1()1( 1
1

'
% )'' tCUEr! .

It is interesting to note that the Hall's random walk hypothesis, which
is based on life-cycle/permanent-income hypothesis, can be directly
derived from the Euler equation which is based on the dynamic
programming, [Blanchard and Fisher (1990)]. To see this, it suffices
to write equation (53) as follows.
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where it is assumed that 0)( 1 &'tvE . Alternatively,

(54) ,)()( 11 '' ')&) ttt CUCU @J

where,
r'

'
&

1

1 !J . Moreover, under certain conditions, we can deduce

from equation (54) that consumption follows a martingale process. For
example, assuming a quadratic utility function together with the
assumption that the rate of interest r is equal to the rate of time
preference !, will result the followings: i) )( tCU ) and )( 1') tCU

become linear functions in consumption and ii)
r'

'
1

1 !
 becomes 1 in

equation (54). Thus, we can write

(55) ,*
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where 1
*

1 '' & tt k@@ and k is a constant.

Appendix 2
For applying the method of maximum principle in its continuous
version, we first write the equation of motion or system dynamics, as
follows,

.1 ttttt CYrAAA %'&%'

The limit of the above equation when we take discrete periods of
length tE and then let tE tend to zero, provides a continuous version
of the equation of motion. Note that since our flow variables, trA , tY

and Ct, are now rates per unit of time, the right hand side of the above
equation should be multiplied by tE . We, therefore, have

" # .)()()()()( ttCtYtrAtAttA E%'&%E'

Dividing by tE  and letting tE  go to zero, will give the time derivative
of )(tA , i.e.

).()()()( tCtYtrAtA %'& 

Conventionally, we write t as a subscript in discrete models and as an
argument in continuous cases. It is further assumed that the initial
level of consumer's financial asset is given, i.e.

.)0()( 0 K&& AtA
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